Class ClusterConfig (3.3.1)

ClusterConfig(mapping=None, *, ignore_unknown_fields=False, **kwargs)

The cluster config.

Attributes

NameDescription
config_bucket str
Optional. A Cloud Storage bucket used to stage job dependencies, config files, and job driver console output. If you do not specify a staging bucket, Cloud Dataproc will determine a Cloud Storage location (US, ASIA, or EU) for your cluster's staging bucket according to the Compute Engine zone where your cluster is deployed, and then create and manage this project-level, per-location bucket (see `Dataproc staging and temp buckets
temp_bucket str
Optional. A Cloud Storage bucket used to store ephemeral cluster and jobs data, such as Spark and MapReduce history files. If you do not specify a temp bucket, Dataproc will determine a Cloud Storage location (US, ASIA, or EU) for your cluster's temp bucket according to the Compute Engine zone where your cluster is deployed, and then create and manage this project-level, per-location bucket. The default bucket has a TTL of 90 days, but you can use any TTL (or none) if you specify a bucket (see `Dataproc staging and temp buckets
gce_cluster_config google.cloud.dataproc_v1.types.GceClusterConfig
Optional. The shared Compute Engine config settings for all instances in a cluster.
master_config google.cloud.dataproc_v1.types.InstanceGroupConfig
Optional. The Compute Engine config settings for the cluster's master instance.
worker_config google.cloud.dataproc_v1.types.InstanceGroupConfig
Optional. The Compute Engine config settings for the cluster's worker instances.
secondary_worker_config google.cloud.dataproc_v1.types.InstanceGroupConfig
Optional. The Compute Engine config settings for a cluster's secondary worker instances
software_config google.cloud.dataproc_v1.types.SoftwareConfig
Optional. The config settings for cluster software.
initialization_actions Sequence[google.cloud.dataproc_v1.types.NodeInitializationAction]
Optional. Commands to execute on each node after config is completed. By default, executables are run on master and all worker nodes. You can test a node's ``role`` metadata to run an executable on a master or worker node, as shown below using ``curl`` (you can also use ``wget``): :: ROLE=$(curl -H Metadata-Flavor:Google http://metadata/computeMetadata/v1/instance/attributes/dataproc-role) if [[ "${ROLE}" == 'Master' ]]; then ... master specific actions ... else ... worker specific actions ... fi
encryption_config google.cloud.dataproc_v1.types.EncryptionConfig
Optional. Encryption settings for the cluster.
autoscaling_config google.cloud.dataproc_v1.types.AutoscalingConfig
Optional. Autoscaling config for the policy associated with the cluster. Cluster does not autoscale if this field is unset.
security_config google.cloud.dataproc_v1.types.SecurityConfig
Optional. Security settings for the cluster.
lifecycle_config google.cloud.dataproc_v1.types.LifecycleConfig
Optional. Lifecycle setting for the cluster.
endpoint_config google.cloud.dataproc_v1.types.EndpointConfig
Optional. Port/endpoint configuration for this cluster
metastore_config google.cloud.dataproc_v1.types.MetastoreConfig
Optional. Metastore configuration.
gke_cluster_config google.cloud.dataproc_v1.types.GkeClusterConfig
Optional. BETA. The Kubernetes Engine config for Dataproc clusters deployed to Kubernetes. Setting this is considered mutually exclusive with Compute Engine-based options such as ``gce_cluster_config``, ``master_config``, ``worker_config``, ``secondary_worker_config``, and ``autoscaling_config``.

Inheritance

builtins.object > proto.message.Message > ClusterConfig