Class ReadRowsQuery (2.23.1)

ReadRowsQuery(
    row_keys: typing.Optional[typing.Union[list[str | bytes], str, bytes]] = None,
    row_ranges: typing.Optional[
        typing.Union[
            list[google.cloud.bigtable.data.read_rows_query.RowRange],
            google.cloud.bigtable.data.read_rows_query.RowRange,
        ]
    ] = None,
    limit: typing.Optional[int] = None,
    row_filter: typing.Optional[
        google.cloud.bigtable.data.row_filters.RowFilter
    ] = None,
)

Class to encapsulate details of a read row request

Methods

ReadRowsQuery

ReadRowsQuery(
    row_keys: typing.Optional[typing.Union[list[str | bytes], str, bytes]] = None,
    row_ranges: typing.Optional[
        typing.Union[
            list[google.cloud.bigtable.data.read_rows_query.RowRange],
            google.cloud.bigtable.data.read_rows_query.RowRange,
        ]
    ] = None,
    limit: typing.Optional[int] = None,
    row_filter: typing.Optional[
        google.cloud.bigtable.data.row_filters.RowFilter
    ] = None,
)

Create a new ReadRowsQuery

__eq__

__eq__(other)

RowRanges are equal if they have the same row keys, row ranges, filter and limit, or if they both represent a full scan with the same filter and limit

add_key

add_key(row_key: str | bytes)

Add a row key to this query

A query can contain multiple keys, but ranges should be preferred

Exceptions
Type Description
ValueError if an input is not a string or bytes:

add_range

add_range(row_range: google.cloud.bigtable.data.read_rows_query.RowRange)

Add a range of row keys to this query.

shard

shard(shard_keys: RowKeySamples) -> ShardedQuery

Split this query into multiple queries that can be evenly distributed across nodes and run in parallel

Exceptions
Type Description
AttributeError if the query contains a limit: