- 3.29.0 (latest)
- 3.27.0
- 3.26.0
- 3.25.0
- 3.24.0
- 3.23.1
- 3.22.0
- 3.21.0
- 3.20.1
- 3.19.0
- 3.18.0
- 3.17.2
- 3.16.0
- 3.15.0
- 3.14.1
- 3.13.0
- 3.12.0
- 3.11.4
- 3.4.0
- 3.3.6
- 3.2.0
- 3.1.0
- 3.0.1
- 2.34.4
- 2.33.0
- 2.32.0
- 2.31.0
- 2.30.1
- 2.29.0
- 2.28.1
- 2.27.1
- 2.26.0
- 2.25.2
- 2.24.1
- 2.23.3
- 2.22.1
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.1
- 2.15.0
- 2.14.0
- 2.13.1
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.2
- 2.5.0
- 2.4.0
- 2.3.1
- 2.2.0
- 2.1.0
- 2.0.0
- 1.28.2
- 1.27.2
- 1.26.1
- 1.25.0
- 1.24.0
- 1.23.1
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
TrainingRun(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Information about a single training query run for the model.
Attributes |
|
---|---|
Name | Description |
training_options |
google.cloud.bigquery_v2.types.Model.TrainingRun.TrainingOptions
Options that were used for this training run, includes user specified and default options that were used. |
start_time |
google.protobuf.timestamp_pb2.Timestamp
The start time of this training run. |
results |
Sequence[google.cloud.bigquery_v2.types.Model.TrainingRun.IterationResult]
Output of each iteration run, results.size() <= max_iterations.=""> |
evaluation_metrics |
google.cloud.bigquery_v2.types.Model.EvaluationMetrics
The evaluation metrics over training/eval data that were computed at the end of training. |
data_split_result |
google.cloud.bigquery_v2.types.Model.DataSplitResult
Data split result of the training run. Only set when the input data is actually split. |
global_explanations |
Sequence[google.cloud.bigquery_v2.types.Model.GlobalExplanation]
Global explanations for important features of the model. For multi-class models, there is one entry for each label class. For other models, there is only one entry in the list. |
Classes
IterationResult
IterationResult(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Information about a single iteration of the training run.
TrainingOptions
TrainingOptions(mapping=None, *, ignore_unknown_fields=False, **kwargs)
Options used in model training.
Methods
__delattr__
__delattr__(key)
Delete the value on the given field.
This is generally equivalent to setting a falsy value.
__eq__
__eq__(other)
Return True if the messages are equal, False otherwise.
__ne__
__ne__(other)
Return True if the messages are unequal, False otherwise.
__setattr__
__setattr__(key, value)
Set the value on the given field.
For well-known protocol buffer types which are marshalled, either the protocol buffer object or the Python equivalent is accepted.