- 1.26.0 (latest)
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
LogisticRegression(
*,
optimize_strategy: typing.Literal[
"auto_strategy", "batch_gradient_descent"
] = "auto_strategy",
fit_intercept: bool = True,
l1_reg: typing.Optional[float] = None,
l2_reg: float = 0.0,
max_iterations: int = 20,
warm_start: bool = False,
learning_rate: typing.Optional[float] = None,
learning_rate_strategy: typing.Literal["line_search", "constant"] = "line_search",
tol: float = 0.01,
ls_init_learning_rate: typing.Optional[float] = None,
calculate_p_values: bool = False,
enable_global_explain: bool = False,
class_weight: typing.Optional[
typing.Union[typing.Literal["balanced"], typing.Dict[str, float]]
] = None
)
Logistic Regression (aka logit, MaxEnt) classifier.
Parameters |
|
---|---|
Name | Description |
optimize_strategy |
str, default "auto_strategy"
The strategy to train logistic regression models. Possible values are "auto_strategy" and "batch_gradient_descent". The two are equilevant since "auto_strategy" will fall back to "batch_gradient_descent". The API is kept for consistency. Default to "auto_strategy". |
fit_intercept |
default True
Default True. Specifies if a constant (a.k.a. bias or intercept) should be added to the decision function. |
class_weight |
dict or 'balanced', default None
Default None. Weights associated with classes in the form |
l1_reg |
float or None, default None
The amount of L1 regularization applied. Default to None. Can't be set in "normal_equation" mode. If unset, value 0 is used. |
l2_reg |
float, default 0.0
The amount of L2 regularization applied. Default to 0. |
max_iterations |
int, default 20
The maximum number of training iterations or steps. Default to 20. |
warm_start |
bool, default False
Determines whether to train a model with new training data, new model options, or both. Unless you explicitly override them, the initial options used to train the model are used for the warm start run. Default to False. |
learning_rate |
float or None, default None
The learn rate for gradient descent when learning_rate_strategy='constant'. If unset, value 0.1 is used. If learning_rate_strategy='line_search', an error is returned. |
learning_rate_strategy |
str, default "line_search"
The strategy for specifying the learning rate during training. Default to "line_search". |
tol |
float, default 0.01
The minimum relative loss improvement that is necessary to continue training when EARLY_STOP is set to true. For example, a value of 0.01 specifies that each iteration must reduce the loss by 1% for training to continue. Default to 0.01. |
ls_init_learning_rate |
float or None, default None
Sets the initial learning rate that learning_rate_strategy='line_search' uses. This option can only be used if line_search is specified. If unset, value 0.1 is used. |
calculate_p_values |
bool, default False
Specifies whether to compute p-values and standard errors during training. Default to False. |
enable_global_explain |
bool, default False
Whether to compute global explanations using explainable AI to evaluate global feature importance to the model. Default to False. |
Methods
__repr__
__repr__()
Print the estimator's constructor with all non-default parameter values.
fit
fit(
X: typing.Union[
bigframes.dataframe.DataFrame,
bigframes.series.Series,
pandas.core.frame.DataFrame,
pandas.core.series.Series,
],
y: typing.Union[
bigframes.dataframe.DataFrame,
bigframes.series.Series,
pandas.core.frame.DataFrame,
pandas.core.series.Series,
],
X_eval: typing.Optional[
typing.Union[
bigframes.dataframe.DataFrame,
bigframes.series.Series,
pandas.core.frame.DataFrame,
pandas.core.series.Series,
]
] = None,
y_eval: typing.Optional[
typing.Union[
bigframes.dataframe.DataFrame,
bigframes.series.Series,
pandas.core.frame.DataFrame,
pandas.core.series.Series,
]
] = None,
) -> bigframes.ml.base._T
Fit the model according to the given training data.
Parameters | |
---|---|
Name | Description |
X |
bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
Series or DataFrame of shape (n_samples, n_features). Training vector, where |
y |
bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
DataFrame of shape (n_samples,). Target vector relative to X. |
X_eval |
bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
Series or DataFrame of shape (n_samples, n_features). Evaluation vector, where |
y_eval |
bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
DataFrame of shape (n_samples,). Target vector relative to X_eval. |
Returns | |
---|---|
Type | Description |
LogisticRegression |
Fitted estimator. |
get_params
get_params(deep: bool = True) -> typing.Dict[str, typing.Any]
Get parameters for this estimator.
Parameter | |
---|---|
Name | Description |
deep |
bool, default True
Default |
Returns | |
---|---|
Type | Description |
Dictionary |
A dictionary of parameter names mapped to their values. |
predict
predict(
X: typing.Union[
bigframes.dataframe.DataFrame,
bigframes.series.Series,
pandas.core.frame.DataFrame,
pandas.core.series.Series,
]
) -> bigframes.dataframe.DataFrame
Predict class labels for samples in X.
Parameter | |
---|---|
Name | Description |
X |
bigframes.dataframe.DataFrame or bigframes.series.Series or pandas.core.frame.DataFrame or pandas.core.series.Series
Series or DataFrame of shape (n_samples, n_features). The data matrix for which we want to get the predictions. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame |
DataFrame of shape (n_samples, n_input_columns + n_prediction_columns). Returns predicted values. |
register
register(vertex_ai_model_id: typing.Optional[str] = None) -> bigframes.ml.base._T
Register the model to Vertex AI.
After register, go to the Google Cloud console (https://console.cloud.google.com/vertex-ai/models) to manage the model registries. Refer to https://cloud.google.com/vertex-ai/docs/model-registry/introduction for more options.
Parameter | |
---|---|
Name | Description |
vertex_ai_model_id |
Optional[str], default None
Optional string id as model id in Vertex. If not set, will default to 'bigframes_{bq_model_id}'. Vertex Ai model id will be truncated to 63 characters due to its limitation. |
score
score(
X: typing.Union[
bigframes.dataframe.DataFrame,
bigframes.series.Series,
pandas.core.frame.DataFrame,
pandas.core.series.Series,
],
y: typing.Union[
bigframes.dataframe.DataFrame,
bigframes.series.Series,
pandas.core.frame.DataFrame,
pandas.core.series.Series,
],
) -> bigframes.dataframe.DataFrame
Return the mean accuracy on the given test data and labels.
In multi-label classification, this is the subset accuracy, which is a harsh metric since you require that each label set be correctly predicted for each sample.
Parameters | |
---|---|
Name | Description |
X |
bigframes.dataframe.DataFrame or bigframes.series.Series
DataFrame of shape (n_samples, n_features). Test samples. |
y |
bigframes.dataframe.DataFrame or bigframes.series.Series
DataFrame of shape (n_samples,) or (n_samples, n_outputs). True labels for |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame |
A DataFrame of the evaluation result. |
to_gbq
to_gbq(
model_name: str, replace: bool = False
) -> bigframes.ml.linear_model.LogisticRegression
Save the model to BigQuery.
Parameters | |
---|---|
Name | Description |
model_name |
str
The name of the model. |
replace |
bool, default False
Determine whether to replace if the model already exists. Default to False. |
Returns | |
---|---|
Type | Description |
LogisticRegression |
Saved model. |