Class Series (1.21.0)

Series(*args, **kwargs)

N-dimensional analogue of DataFrame. Store multi-dimensional in a size-mutable, labeled data structure

Properties

T

Return the transpose, which is by definition self.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series(['Ant', 'Bear', 'Cow'])
>>> s
0     Ant
1    Bear
2     Cow
dtype: string

>>> s.T
0     Ant
1    Bear
2     Cow
dtype: string

at

Access a single value for a row/column label pair.

Examples:

>>> import bigframes.pandas as bpd
>>> s = bpd.Series([1, 2, 3], index=['A', 'B', 'C'])
>>> bpd.options.display.progress_bar = None
>>> s
A    1
B    2
C    3
dtype: Int64

Get value at specified row label

>>> s.at['B']
np.int64(2)
Returns
Type Description
bigframes.core.indexers.AtSeriesIndexer Indexers object.

dt

Accessor object for datetime-like properties of the Series values.

Returns
Type Description
bigframes.operations.datetimes.DatetimeMethods An accessor containing datetime methods.

dtype

Return the dtype object of the underlying data.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 3])
>>> s.dtype
Int64Dtype()

dtypes

Return the dtypes in the DataFrame.

This returns a Series with the data type of each column. The result's index is the original DataFrame's columns. Columns with mixed types aren't supported yet in BigQuery DataFrames.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame({'float': [1.0], 'int': [1], 'string': ['foo']})
>>> df.dtypes
float             Float64
int                 Int64
string    string[pyarrow]
dtype: object

empty

Indicates whether Series/DataFrame is empty.

True if Series/DataFrame is entirely empty (no items), meaning any of the axes are of length 0.

Returns
Type Description
bool If Series/DataFrame is empty, return True, if not return False.

hasnans

Return True if there are any NaNs.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 3, None])
>>> s
0     1.0
1     2.0
2     3.0
3    <NA>
dtype: Float64
>>> s.hasnans
np.True_

iat

Access a single value for a row/column pair by integer position.

Examples:

>>> import bigframes.pandas as bpd
>>> s = bpd.Series(bpd.Series([1, 2, 3]))
>>> bpd.options.display.progress_bar = None
>>> s
0    1
1    2
2    3
dtype: Int64

Get value at specified row number

>>> s.iat[1]
np.int64(2)
Returns
Type Description
bigframes.core.indexers.IatSeriesIndexer Indexers object.

iloc

Purely integer-location based indexing for selection by position.

Returns
Type Description
bigframes.core.indexers.IlocSeriesIndexer Purely integer-location Indexers.

index

The index (axis labels) of the Series.

The index of a Series is used to label and identify each element of the underlying data. The index can be thought of as an immutable ordered set (technically a multi-set, as it may contain duplicate labels), and is used to index and align data.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

You can access the index of a Series via index property.

>>> df = bpd.DataFrame({'Name': ['Alice', 'Bob', 'Aritra'],
...                     'Age': [25, 30, 35],
...                     'Location': ['Seattle', 'New York', 'Kona']},
...                    index=([10, 20, 30]))
>>> s = df["Age"]
>>> s
10    25
20    30
30    35
Name: Age, dtype: Int64
>>> s.index # doctest: +ELLIPSIS
Index([10, 20, 30], dtype='Int64')
>>> s.index.values
array([10, 20, 30])

Let's try setting a multi-index case reflect via index property.

>>> df1 = df.set_index(["Name", "Location"])
>>> s1 = df1["Age"]
>>> s1
Name    Location
Alice   Seattle     25
Bob     New York    30
Aritra  Kona        35
Name: Age, dtype: Int64
>>> s1.index # doctest: +ELLIPSIS
MultiIndex([( 'Alice',  'Seattle'),
    (   'Bob', 'New York'),
    ('Aritra',     'Kona')],
   names=['Name', 'Location'])
>>> s1.index.values
array([('Alice', 'Seattle'), ('Bob', 'New York'), ('Aritra', 'Kona')],
    dtype=object)
Returns
Type Description
Index The index object of the Series.

is_monotonic_decreasing

Return boolean if values in the object are monotonically decreasing.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([3, 2, 2, 1])
>>> s.is_monotonic_decreasing
np.True_

>>> s = bpd.Series([1, 2, 3])
>>> s.is_monotonic_decreasing
np.False_
Returns
Type Description
bool Boolean.

is_monotonic_increasing

Return boolean if values in the object are monotonically increasing.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 2])
>>> s.is_monotonic_increasing
np.True_

>>> s = bpd.Series([3, 2, 1])
>>> s.is_monotonic_increasing
np.False_
Returns
Type Description
bool Boolean.

list

API documentation for list property.

loc

Access a group of rows and columns by label(s) or a boolean array.

Returns
Type Description
bigframes.core.indexers.LocSeriesIndexer Indexers object.

name

Return the name of the Series.

The name of a Series becomes its index or column name if it is used to form a DataFrame. It is also used whenever displaying the Series using the interpreter.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

For a Series:

>>> s = bpd.Series([1, 2, 3], dtype="Int64", name='Numbers')
>>> s
0    1
1    2
2    3
Name: Numbers, dtype: Int64
>>> s.name
'Numbers'

If the Series is part of a DataFrame:

>>> df = bpd.DataFrame({'col1': [1, 2], 'col2': [3, 4]})
>>> df
   col1  col2
0     1     3
1     2     4
<BLANKLINE>
[2 rows x 2 columns]
>>> s = df["col1"]
>>> s.name
'col1'
Returns
Type Description
hashable object The name of the Series, also the column name if part of a DataFrame.

ndim

Return an int representing the number of axes / array dimensions.

Returns
Type Description
int Return 1 if Series. Otherwise return 2 if DataFrame.

plot

Make plots of Series.

Returns
Type Description
bigframes.operations.plotting.PlotAccessor An accessor making plots.

query_job

BigQuery job metadata for the most recent query.

shape

Return a tuple of the shape of the underlying data.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 4, 9, 16])
>>> s.shape
(4,)
>>> s = bpd.Series(['Alice', 'Bob', bpd.NA])
>>> s.shape
(3,)

size

Return the number of elements in the underlying data.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

For Series:

>>> s = bpd.Series({'a': 1, 'b': 2, 'c': 3})
>>> s.size
3

For Index:

>>> idx = bpd.Index(bpd.Series([1, 2, 3]))
>>> idx.size
3
Returns
Type Description
int Return the number of elements in the underlying data.

str

Vectorized string functions for Series and Index.

NAs stay NA unless handled otherwise by a particular method. Patterned after Python’s string methods, with some inspiration from R’s stringr package.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series(["A_Str_Series"])
>>> s
0    A_Str_Series
dtype: string

>>> s.str.lower()
0    a_str_series
dtype: string

>>> s.str.replace("_", "")
0    AStrSeries
dtype: string
Returns
Type Description
bigframes.operations.strings.StringMethods An accessor containing string methods.

struct

Accessor object for struct properties of the Series values.

Returns
Type Description
bigframes.operations.structs.StructAccessor An accessor containing struct methods.

values

Return Series as ndarray or ndarray-like depending on the dtype.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> bpd.Series([1, 2, 3]).values
array([1, 2, 3])

>>> bpd.Series(list('aabc')).values
array(['a', 'a', 'b', 'c'], dtype=object)
Returns
Type Description
numpy.ndarray or ndarray-like Values in the Series.

Methods

__add__

__add__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get addition of Series and other, element-wise, using operator +.

Equivalent to Series.add(other).

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1.5, 2.6], index=['elk', 'moose'])
>>> s
elk      1.5
moose    2.6
dtype: Float64

You can add a scalar.

>>> s + 1.5
elk      3.0
moose    4.1
dtype: Float64

You can add another Series with index aligned.

>>> delta = bpd.Series([1.5, 2.6], index=['elk', 'moose'])
>>> s + delta
elk      3.0
moose    5.2
dtype: Float64

Adding any mis-aligned index will result in invalid values.

>>> delta = bpd.Series([1.5, 2.6], index=['moose', 'bison'])
>>> s + delta
elk      <NA>
moose     4.1
bison    <NA>
dtype: Float64
Parameter
Name Description
other scalar or Series

Object to be added to the Series.

Returns
Type Description
Series The result of adding other to Series.

__and__

__and__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise AND of Series and other, element-wise, using operator &.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([0, 1, 2, 3])

You can operate with a scalar.

>>> s & 6
0    0
1    0
2    2
3    2
dtype: Int64

You can operate with another Series.

>>> s1 = bpd.Series([5, 6, 7, 8])
>>> s & s1
0    0
1    0
2    2
3    0
dtype: Int64
Parameter
Name Description
other scalar or Series

Object to bitwise AND with the Series.

Returns
Type Description
bigframes.series.Series The result of the operation.

__array__

__array__(dtype=None) -> numpy.ndarray

Returns the values as NumPy array.

Equivalent to Series.to_numpy(dtype).

Users should not call this directly. Rather, it is invoked by numpy.array and numpy.asarray.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> import numpy as np

>>> ser = bpd.Series([1, 2, 3])

>>> np.asarray(ser)
array([1, 2, 3])
Parameter
Name Description
dtype str or numpy.dtype, optional

The dtype to use for the resulting NumPy array. By default, the dtype is inferred from the data.

Returns
Type Description
numpy.ndarray The values in the series converted to a numpy.ndarray with the specified dtype.

__array_ufunc__

__array_ufunc__(
    ufunc: numpy.ufunc, method: str, *inputs, **kwargs
) -> bigframes.series.Series

Used to support numpy ufuncs. See: https://numpy.org/doc/stable/reference/ufuncs.html

__bool__

__bool__()

Returns the truth value of the object.

__floordiv__

__floordiv__(
    other: float | int | bigframes.series.Series,
) -> bigframes.series.Series

Get integer divison of Series by other, using arithmatic operator //.

Equivalent to Series.floordiv(other).

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

You can divide by a scalar:

>>> s = bpd.Series([15, 30, 45])
>>> s // 2
0     7
1    15
2    22
dtype: Int64

You can also divide by another DataFrame:

>>> divisor = bpd.Series([3, 4, 4])
>>> s // divisor
0     5
1     7
2    11
dtype: Int64
Parameter
Name Description
other scalar or Series

Object to divide the Series by.

Returns
Type Description
Series The result of the integer divison.

__getitem__

__getitem__(indexer)

Gets the specified index from the Series.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([15, 30, 45])
>>> s[1]
np.int64(30)
>>> s[0:2]
0    15
1    30
dtype: Int64
Parameter
Name Description
indexer int or slice

Index or slice of indices.

Returns
Type Description
Series or Value Value(s) at the requested index(es).

__invert__

__invert__() -> bigframes.series.Series

Returns the logical inversion (binary NOT) of the Series, element-wise using operator ````.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> ser = bpd.Series([True, False, True])
>>> `ser`
0    False
1     True
2    False
dtype: boolean
Returns
Type Description
Series The inverted values in the series.

__len__

__len__()

Returns number of values in the Series, serves len operator.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 3])
>>> len(s)
3

__matmul__

__matmul__(other)

Matrix multiplication using binary @ operator.

__mod__

__mod__(other) -> bigframes.series.Series

Get modulo of Series with other, element-wise, using operator %.

Equivalent to Series.mod(other).

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

You can modulo with a scalar:

>>> s = bpd.Series([1, 2, 3])
>>> s % 3
0    1
1    2
2    0
dtype: Int64

You can also modulo with another Series:

>>> modulo = bpd.Series([3, 3, 3])
>>> s % modulo
0    1
1    2
2    0
dtype: Int64
Parameter
Name Description
other scalar or Series

Object to modulo the Series by.

Returns
Type Description
Series The result of the modulo.

__mul__

__mul__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get multiplication of Series with other, element-wise, using operator *.

Equivalent to Series.mul(other).

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

You can multiply with a scalar:

>>> s = bpd.Series([1, 2, 3])
>>> s * 3
0    3
1    6
2    9
dtype: Int64

You can also multiply with another Series:

>>> s1 = bpd.Series([2, 3, 4])
>>> s * s1
0     2
1     6
2    12
dtype: Int64
Parameter
Name Description
other scalar or Series

Object to multiply with the Series.

Returns
Type Description
Series The result of the multiplication.

__nonzero__

__nonzero__()

Returns the truth value of the object.

__or__

__or__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise XOR of Series and other, element-wise, using operator ^.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([0, 1, 2, 3])

You can operate with a scalar.

>>> s ^ 6
0    6
1    7
2    4
3    5
dtype: Int64

You can operate with another Series.

>>> s1 = bpd.Series([5, 6, 7, 8])
>>> s ^ s1
0     5
1     7
2     5
3    11
dtype: Int64
Parameter
Name Description
other scalar or Series

Object to bitwise XOR with the Series.

Returns
Type Description
bigframes.series.Series The result of the operation.

__pow__

__pow__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get exponentiation of Series with other, element-wise, using operator **.

Equivalent to Series.pow(other).

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

You can exponentiate with a scalar:

>>> s = bpd.Series([1, 2, 3])
>>> s ** 2
0    1
1    4
2    9
dtype: Int64

You can also exponentiate with another Series:

>>> exponent = bpd.Series([3, 2, 1])
>>> s ** exponent
0    1
1    4
2    3
dtype: Int64
Parameter
Name Description
other scalar or Series

Object to exponentiate the Series with.

Returns
Type Description
Series The result of the exponentiation.

__radd__

__radd__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get addition of Series and other, element-wise, using operator +.

Equivalent to Series.radd(other).

Parameter
Name Description
other scalar or Series

Object to which Series should be added.

Returns
Type Description
Series The result of adding Series to other.

__rand__

__rand__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise AND of Series and other, element-wise, using operator &.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([0, 1, 2, 3])

You can operate with a scalar.

>>> s & 6
0    0
1    0
2    2
3    2
dtype: Int64

You can operate with another Series.

>>> s1 = bpd.Series([5, 6, 7, 8])
>>> s & s1
0    0
1    0
2    2
3    0
dtype: Int64
Parameter
Name Description
other scalar or Series

Object to bitwise AND with the Series.

Returns
Type Description
bigframes.series.Series The result of the operation.

__rfloordiv__

__rfloordiv__(
    other: float | int | bigframes.series.Series,
) -> bigframes.series.Series

Get integer divison of other by Series, using arithmatic operator //.

Equivalent to Series.rfloordiv(other).

Parameter
Name Description
other scalar or Series

Object to divide by the Series.

Returns
Type Description
Series The result of the integer divison.

__rmatmul__

__rmatmul__(other)

Matrix multiplication using binary @ operator.

__rmod__

__rmod__(other) -> bigframes.series.Series

Get modulo of other with Series, element-wise, using operator %.

Equivalent to Series.rmod(other).

Parameter
Name Description
other scalar or Series

Object to modulo by the Series.

Returns
Type Description
Series The result of the modulo.

__rmul__

__rmul__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get multiplication of other with Series, element-wise, using operator *.

Equivalent to Series.rmul(other).

Parameter
Name Description
other scalar or Series

Object to multiply the Series with.

Returns
Type Description
Series The result of the multiplication.

__ror__

__ror__(other: bool | int | bigframes.series.Series) -> bigframes.series.Series

Get bitwise XOR of Series and other, element-wise, using operator ^.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([0, 1, 2, 3])

You can operate with a scalar.

>>> s ^ 6
0    6
1    7
2    4
3    5
dtype: Int64

You can operate with another Series.

>>> s1 = bpd.Series([5, 6, 7, 8])
>>> s ^ s1
0     5
1     7
2     5
3    11
dtype: Int64
Parameter
Name Description
other scalar or Series

Object to bitwise XOR with the Series.

Returns
Type Description
bigframes.series.Series The result of the operation.

__rpow__

__rpow__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get exponentiation of other with Series, element-wise, using operator **.

Equivalent to Series.rpow(other).

Parameter
Name Description
other scalar or Series

Object to exponentiate with the Series.

Returns
Type Description
Series The result of the exponentiation.

__rsub__

__rsub__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get subtraction of Series from other, element-wise, using operator -.

Equivalent to Series.rsub(other).

Parameter
Name Description
other scalar or Series

Object to subtract the Series from.

Returns
Type Description
Series The result of subtraction.

__rtruediv__

__rtruediv__(
    other: float | int | bigframes.series.Series,
) -> bigframes.series.Series

Get division of other by Series, element-wise, using operator /.

Equivalent to Series.rtruediv(other).

Parameter
Name Description
other scalar or Series

Object to divide by the Series.

Returns
Type Description
Series The result of the division.

__sub__

__sub__(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Get subtraction of other from Series, element-wise, using operator -.

Equivalent to Series.sub(other).

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1.5, 2.6], index=['elk', 'moose'])
>>> s
elk      1.5
moose    2.6
dtype: Float64

You can subtract a scalar.

>>> s - 1.5
elk      0.0
moose    1.1
dtype: Float64

You can subtract another Series with index aligned.

>>> delta = bpd.Series([0.5, 1.0], index=['elk', 'moose'])
>>> s - delta
elk      1.0
moose    1.6
dtype: Float64

Adding any mis-aligned index will result in invalid values.

>>> delta = bpd.Series([0.5, 1.0], index=['moose', 'bison'])
>>> s - delta
elk      <NA>
moose     2.1
bison    <NA>
dtype: Float64
Parameter
Name Description
other scalar or Series

Object to subtract from the Series.

Returns
Type Description
Series The result of subtraction.

__truediv__

__truediv__(
    other: float | int | bigframes.series.Series,
) -> bigframes.series.Series

Get division of Series by other, element-wise, using operator /.

Equivalent to Series.truediv(other).

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

You can multiply with a scalar:

>>> s = bpd.Series([1, 2, 3])
>>> s / 2
0    0.5
1    1.0
2    1.5
dtype: Float64

You can also multiply with another Series:

>>> denominator = bpd.Series([2, 3, 4])
>>> s / denominator
0         0.5
1    0.666667
2        0.75
dtype: Float64
Parameter
Name Description
other scalar or Series

Object to divide the Series by.

Returns
Type Description
Series The result of the division.

abs

abs() -> bigframes.series.Series

Return a Series/DataFrame with absolute numeric value of each element.

This function only applies to elements that are all numeric.

add

add(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return addition of Series and other, element-wise (binary operator add).

Equivalent to series + other, but with support to substitute a fill_value for missing data in either one of the inputs.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> a = bpd.Series([1, 2, 3, bpd.NA])
>>> a
0       1
1       2
2       3
3    <NA>
dtype: Int64

>>> b = bpd.Series([10, 20, 30, 40])
>>> b
0     10
1     20
2     30
3     40
dtype: Int64

>>> a.add(b)
0      11
1      22
2      33
3    <NA>
dtype: Int64

You can also use the mathematical operator +:

>>> a + b
0      11
1      22
2      33
3    <NA>
dtype: Int64

Adding two Series with explicit indexes:

>>> a = bpd.Series([1, 2, 3, 4], index=['a', 'b', 'c', 'd'])
>>> b = bpd.Series([10, 20, 30, 40], index=['a', 'b', 'd', 'e'])
>>> a.add(b)
a      11
b      22
c    <NA>
d      34
e    <NA>
dtype: Int64
Returns
Type Description
bigframes.series.Series The result of the operation.

add_prefix

add_prefix(prefix: str, axis: int | str | None = None) -> bigframes.series.Series

Prefix labels with string prefix.

For Series, the row labels are prefixed. For DataFrame, the column labels are prefixed.

Parameters
Name Description
prefix str

The string to add before each label.

axis int or str or None, default None

{{0 or 'index', 1 or 'columns', None}}, default None. Axis to add prefix on.

add_suffix

add_suffix(suffix: str, axis: int | str | None = None) -> bigframes.series.Series

Suffix labels with string suffix.

For Series, the row labels are suffixed. For DataFrame, the column labels are suffixed.

agg

agg(
    func: typing.Union[str, typing.Sequence[str]]
) -> typing.Union[typing.Any, bigframes.series.Series]

Aggregate using one or more operations over the specified axis.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 3, 4])
>>> s
0    1
1    2
2    3
3    4
dtype: Int64

>>> s.agg('min')
np.int64(1)

>>> s.agg(['min', 'max'])
min    1
max    4
dtype: Int64
Parameter
Name Description
func function

Function to use for aggregating the data. Accepted combinations are: string function name, list of function names, e.g. ['sum', 'mean'].

Returns
Type Description
scalar or Series Aggregated results

aggregate

aggregate(
    func: typing.Union[str, typing.Sequence[str]]
) -> typing.Union[typing.Any, bigframes.series.Series]

Aggregate using one or more operations over the specified axis.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 3, 4])
>>> s
0    1
1    2
2    3
3    4
dtype: Int64

>>> s.agg('min')
np.int64(1)

>>> s.agg(['min', 'max'])
min    1
max    4
dtype: Int64
Parameter
Name Description
func function

Function to use for aggregating the data. Accepted combinations are: string function name, list of function names, e.g. ['sum', 'mean'].

Returns
Type Description
scalar or Series Aggregated results

all

all() -> bool

Return whether all elements are True, potentially over an axis.

Returns True unless there at least one element within a Series or along a DataFrame axis that is False or equivalent (e.g. zero or empty).

Returns
Type Description
scalar or Series If level is specified, then, Series is returned; otherwise, scalar is returned.

any

any() -> bool

Return whether any element is True, potentially over an axis.

Returns False unless there is at least one element within a series or along a Dataframe axis that is True or equivalent (e.g. non-zero or non-empty).

Returns
Type Description
scalar or Series If level is specified, then, Series is returned; otherwise, scalar is returned.

apply

apply(
    func, by_row: typing.Union[typing.Literal["compat"], bool] = "compat"
) -> bigframes.series.Series

Invoke function on values of a Series.

Can be ufunc (a NumPy function that applies to the entire Series) or a Python function that only works on single values. If it is an arbitrary python function then converting it into a remote_function is recommended.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

For applying arbitrary python function a remote_funciton is recommended. Let's use reuse=False flag to make sure a new remote_function is created every time we run the following code, but you can skip it to potentially reuse a previously deployed remote_function from the same user defined function.

>>> @bpd.remote_function(reuse=False)
... def minutes_to_hours(x: int) -> float:
...     return x/60

>>> minutes = bpd.Series([0, 30, 60, 90, 120])
>>> minutes
0      0
1     30
2     60
3     90
4    120
dtype: Int64

>>> hours = minutes.apply(minutes_to_hours)
>>> hours
0    0.0
1    0.5
2    1.0
3    1.5
4    2.0
dtype: Float64

To turn a user defined function with external package dependencies into a remote_function, you would provide the names of the packages via packages param.

>>> @bpd.remote_function(
...     reuse=False,
...     packages=["cryptography"],
... )
... def get_hash(input: str) -> str:
...     from cryptography.fernet import Fernet
...
...     # handle missing value
...     if input is None:
...         input = ""
...
...     key = Fernet.generate_key()
...     f = Fernet(key)
...     return f.encrypt(input.encode()).decode()

>>> names = bpd.Series(["Alice", "Bob"])
>>> hashes = names.apply(get_hash)

Simple vectorized functions, lambdas or ufuncs can be applied directly with by_row=False.

>>> nums = bpd.Series([1, 2, 3, 4])
>>> nums
0    1
1    2
2    3
3    4
dtype: Int64
>>> nums.apply(lambda x: x*x + 2*x + 1, by_row=False)
0     4
1     9
2    16
3    25
dtype: Int64

>>> def is_odd(num):
...     return num % 2 == 1
>>> nums.apply(is_odd, by_row=False)
0     True
1    False
2     True
3    False
dtype: boolean

>>> nums.apply(np.log, by_row=False)
0         0.0
1    0.693147
2    1.098612
3    1.386294
dtype: Float64
Parameters
Name Description
func function

BigFrames DataFrames remote_function to apply. The function should take a scalar and return a scalar. It will be applied to every element in the Series.

by_row False or "compat", default "compat"

If "compat" , func must be a remote function which will be passed each element of the Series, like Series.map. If False, the func will be passed the whole Series at once.

Returns
Type Description
bigframes.series.Series A new Series with values representing the return value of the func applied to each element of the original Series.

argmax

argmax() -> int

Return int position of the smallest value in the series.

If the minimum is achieved in multiple locations, the first row position is returned.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Consider dataset containing cereal calories.

>>> s = bpd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0,
...                 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0})
>>> s
Corn Flakes              100.0
Almond Delight           110.0
Cinnamon Toast Crunch    120.0
Cocoa Puff               110.0
dtype: Float64

>>> s.argmax()
np.int64(2)

>>> s.argmin()
np.int64(0)

The maximum cereal calories is the third element and the minimum cereal calories is the first element, since series is zero-indexed.

Returns
Type Description
Series Row position of the maximum value.

argmin

argmin() -> int

Return int position of the largest value in the Series.

If the maximum is achieved in multiple locations, the first row position is returned.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Consider dataset containing cereal calories.

>>> s = bpd.Series({'Corn Flakes': 100.0, 'Almond Delight': 110.0,
...                 'Cinnamon Toast Crunch': 120.0, 'Cocoa Puff': 110.0})
>>> s
Corn Flakes              100.0
Almond Delight           110.0
Cinnamon Toast Crunch    120.0
Cocoa Puff               110.0
dtype: Float64

>>> s.argmax()
np.int64(2)

>>> s.argmin()
np.int64(0)

The maximum cereal calories is the third element and the minimum cereal calories is the first element, since series is zero-indexed.

Returns
Type Description
Series Row position of the minimum value.

astype

astype(
    dtype: typing.Union[
        typing.Literal[
            "boolean",
            "Float64",
            "Int64",
            "int64[pyarrow]",
            "string",
            "string[pyarrow]",
            "timestamp[us, tz=UTC][pyarrow]",
            "timestamp[us][pyarrow]",
            "date32[day][pyarrow]",
            "time64[us][pyarrow]",
            "decimal128(38, 9)[pyarrow]",
            "decimal256(76, 38)[pyarrow]",
            "binary[pyarrow]",
        ],
        pandas.core.arrays.boolean.BooleanDtype,
        pandas.core.arrays.floating.Float64Dtype,
        pandas.core.arrays.integer.Int64Dtype,
        pandas.core.arrays.string_.StringDtype,
        pandas.core.dtypes.dtypes.ArrowDtype,
        geopandas.array.GeometryDtype,
    ]
) -> bigframes.series.Series

Cast a pandas object to a specified dtype dtype.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Create a DataFrame:

>>> d = {'col1': [1, 2], 'col2': [3, 4]}
>>> df = bpd.DataFrame(data=d)
>>> df.dtypes
col1    Int64
col2    Int64
dtype: object

Cast all columns to Float64:

>>> df.astype('Float64').dtypes
col1    Float64
col2    Float64
dtype: object

Create a series of type Int64:

>>> ser = bpd.Series([2023010000246789, 1624123244123101, 1054834234120101], dtype='Int64')
>>> ser
0    2023010000246789
1    1624123244123101
2    1054834234120101
dtype: Int64

Convert to Float64 type:

>>> ser.astype('Float64')
0    2023010000246789.0
1    1624123244123101.0
2    1054834234120101.0
dtype: Float64

Convert to pd.ArrowDtype(pa.timestamp("us", tz="UTC")) type:

>>> ser.astype("timestamp[us, tz=UTC][pyarrow]")
0    2034-02-08 11:13:20.246789+00:00
1    2021-06-19 17:20:44.123101+00:00
2    2003-06-05 17:30:34.120101+00:00
dtype: timestamp[us, tz=UTC][pyarrow]

Note that this is equivalent of using to_datetime with unit='us':

>>> bpd.to_datetime(ser, unit='us', utc=True)
0    2034-02-08 11:13:20.246789+00:00
1    2021-06-19 17:20:44.123101+00:00
2    2003-06-05 17:30:34.120101+00:00
dtype: timestamp[us, tz=UTC][pyarrow]

Convert pd.ArrowDtype(pa.timestamp("us", tz="UTC")) type to Int64 type:

>>> timestamp_ser = ser.astype("timestamp[us, tz=UTC][pyarrow]")
>>> timestamp_ser.astype('Int64')
0    2023010000246789
1    1624123244123101
2    1054834234120101
dtype: Int64
Parameter
Name Description
dtype str or pandas.ExtensionDtype

A dtype supported by BigQuery DataFrame include 'boolean', 'Float64', 'Int64', 'int64[pyarrow]', 'string', 'string[pyarrow]', 'timestamp[us, tz=UTC][pyarrow]', 'timestamp[us][pyarrow]', 'date32[day][pyarrow]', 'time64[us][pyarrow]'. A pandas.ExtensionDtype include pandas.BooleanDtype(), pandas.Float64Dtype(), pandas.Int64Dtype(), pandas.StringDtype(storage="pyarrow"), pd.ArrowDtype(pa.date32()), pd.ArrowDtype(pa.time64("us")), pd.ArrowDtype(pa.timestamp("us")), pd.ArrowDtype(pa.timestamp("us", tz="UTC")).

autocorr

autocorr(lag: int = 1) -> float

Compute the lag-N autocorrelation.

This method computes the Pearson correlation between the Series and its shifted self.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([0.25, 0.5, 0.2, -0.05])
>>> s.autocorr()  # doctest: +ELLIPSIS
np.float64(0.10355263309024067)
>>> s.autocorr(lag=2)
np.float64(-1.0)

If the Pearson correlation is not well defined, then 'NaN' is returned.

>>> s = bpd.Series([1, 0, 0, 0])
>>> s.autocorr()
np.float64(nan)
Parameter
Name Description
lag int, default 1

Number of lags to apply before performing autocorrelation.

Returns
Type Description
float The Pearson correlation between self and self.shift(lag).

between

between(left, right, inclusive="both")

Return boolean Series equivalent to left <= series <= right.

This function returns a boolean vector containing True wherever the corresponding Series element is between the boundary values left and right. NA values are treated as False.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Boundary values are included by default:

>>> s = bpd.Series([2, 0, 4, 8, np.nan])
>>> s.between(1, 4)
0     True
1    False
2     True
3    False
4     <NA>
dtype: boolean

With inclusive set to "neither" boundary values are excluded:

>>> s.between(1, 4, inclusive="neither")
0     True
1    False
2    False
3    False
4     <NA>
dtype: boolean

left and right can be any scalar value:

>>> s = bpd.Series(['Alice', 'Bob', 'Carol', 'Eve'])
>>> s.between('Anna', 'Daniel')
0    False
1     True
2     True
3    False
dtype: boolean
Parameters
Name Description
left scalar or list-like

Left boundary.

right scalar or list-like

Right boundary.

inclusive {"both", "neither", "left", "right"}

Include boundaries. Whether to set each bound as closed or open.

Returns
Type Description
Series Series representing whether each element is between left and right (inclusive).

bfill

bfill(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by using the next valid observation to fill the gap.

Returns
Type Description
Series/DataFrame or None Object with missing values filled.

cache

cache()

Materializes the Series to a temporary table.

Useful if the series will be used multiple times, as this will avoid recomputating the shared intermediate value.

Returns
Type Description
Series Self

case_when

case_when(caselist) -> bigframes.series.Series

Replace values where the conditions are True.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> c = bpd.Series([6, 7, 8, 9], name="c")
>>> a = bpd.Series([0, 0, 1, 2])
>>> b = bpd.Series([0, 3, 4, 5])

>>> c.case_when(
...     caselist=[
...         (a.gt(0), a),  # condition, replacement
...         (b.gt(0), b),
...     ]
... )
0    6
1    3
2    1
3    2
Name: c, dtype: Int64

See also:

  • bigframes.series.Series.mask : Replace values where the condition is True.

clip

clip(lower, upper)

Trim values at input threshold(s).

Assigns values outside boundary to boundary values. Thresholds can be singular values or array like, and in the latter case the clipping is performed element-wise in the specified axis.

Parameters
Name Description
lower float or array-like, default None

Minimum threshold value. All values below this threshold will be set to it. A missing threshold (e.g NA) will not clip the value.

upper float or array-like, default None

Maximum threshold value. All values above this threshold will be set to it. A missing threshold (e.g NA) will not clip the value.

Returns
Type Description
Series Series.

combine

combine(other, func) -> bigframes.series.Series

Combine the Series with a Series or scalar according to func.

Combine the Series and other using func to perform elementwise selection for combined Series. fill_value is assumed when value is missing at some index from one of the two objects being combined.

Examples:

>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None

Consider 2 Datasets `s1` and `s2` containing
highest clocked speeds of different birds.

>>> s1 = bpd.Series({'falcon': 330.0, 'eagle': 160.0})
>>> s1
falcon    330.0
eagle     160.0
dtype: Float64
>>> s2 = bpd.Series({'falcon': 345.0, 'eagle': 200.0, 'duck': 30.0})
>>> s2
falcon    345.0
eagle     200.0
duck       30.0
dtype: Float64

Now, to combine the two datasets and view the highest speeds
of the birds across the two datasets

>>> s1.combine(s2, np.maximum)
falcon    345.0
eagle     200.0
duck       <NA>
dtype: Float64
Parameters
Name Description
other Series or scalar

The value(s) to be combined with the Series.

func function

BigFrames DataFrames remote_function to apply. Takes two scalars as inputs and returns an element. Also accepts some numpy binary functions.

Returns
Type Description
Series The result of combining the Series with the other object.

combine_first

combine_first(other: bigframes.series.Series) -> bigframes.series.Series

Update null elements with value in the same location in 'other'.

Combine two Series objects by filling null values in one Series with non-null values from the other Series. Result index will be the union of the two indexes.

Examples:

>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None

>>> s1 = bpd.Series([1, np.nan])
>>> s2 = bpd.Series([3, 4, 5])
>>> s1.combine_first(s2)
0    1.0
1    4.0
2    5.0
dtype: Float64

Null values still persist if the location of that null value
does not exist in `other`

>>> s1 = bpd.Series({'falcon': np.nan, 'eagle': 160.0})
>>> s2 = bpd.Series({'eagle': 200.0, 'duck': 30.0})
>>> s1.combine_first(s2)
falcon     <NA>
eagle     160.0
duck       30.0
dtype: Float64
Parameter
Name Description
other Series

The value(s) to be used for filling null values.

Returns
Type Description
Series The result of combining the provided Series with the other object.

copy

copy() -> bigframes.series.Series

Make a copy of this object's indices and data.

A new object will be created with a copy of the calling object's data and indices. Modifications to the data or indices of the copy will not be reflected in the original object.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Modification in the original Series will not affect the copy Series:

>>> s = bpd.Series([1, 2], index=["a", "b"])
>>> s
a    1
b    2
dtype: Int64

>>> s_copy = s.copy()
>>> s_copy
a    1
b    2
dtype: Int64

>>> s.loc['b'] = 22
>>> s
a     1
b    22
dtype: Int64
>>> s_copy
a    1
b    2
dtype: Int64

Modification in the original DataFrame will not affect the copy DataFrame:

>>> df = bpd.DataFrame({'a': [1, 3], 'b': [2, 4]})
>>> df
   a  b
0  1  2
1  3  4
<BLANKLINE>
[2 rows x 2 columns]

>>> df_copy = df.copy()
>>> df_copy
   a  b
0  1  2
1  3  4
<BLANKLINE>
[2 rows x 2 columns]

>>> df.loc[df["b"] == 2, "b"] = 22
>>> df
   a   b
0  1  22
1  3   4
<BLANKLINE>
[2 rows x 2 columns]
>>> df_copy
   a  b
0  1  2
1  3  4
<BLANKLINE>
[2 rows x 2 columns]

corr

corr(other: bigframes.series.Series, method="pearson", min_periods=None) -> float

Compute the correlation with the other Series. Non-number values are ignored in the computation.

Uses the "Pearson" method of correlation. Numbers are converted to float before calculation, so the result may be unstable.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s1 = bpd.Series([.2, .0, .6, .2])
>>> s2 = bpd.Series([.3, .6, .0, .1])
>>> s1.corr(s2)
np.float64(-0.8510644963469901)

>>> s1 = bpd.Series([1, 2, 3], index=[0, 1, 2])
>>> s2 = bpd.Series([1, 2, 3], index=[2, 1, 0])
>>> s1.corr(s2)
np.float64(-1.0)
Parameters
Name Description
other Series

The series with which this is to be correlated.

method string, default "pearson"

Correlation method to use - currently only "pearson" is supported.

min_periods int, default None

The minimum number of observations needed to return a result. Non-default values are not yet supported, so a result will be returned for at least two observations.

Returns
Type Description
float Will return NaN if there are fewer than two numeric pairs, either series has a variance or covariance of zero, or any input value is infinite.

count

count() -> int

Return number of non-NA/null observations in the Series.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([0.0, 1.0, bpd.NA])
>>> s
0     0.0
1     1.0
2    <NA>
dtype: Float64
>>> s.count()
np.int64(2)
Returns
Type Description
int or Series (if level specified) Number of non-null values in the Series.

cov

cov(other: bigframes.series.Series) -> float

Compute covariance with Series, excluding missing values.

The two Series objects are not required to be the same length and will be aligned internally before the covariance is calculated.

Parameter
Name Description
other Series

Series with which to compute the covariance.

Returns
Type Description
float Covariance between Series and other normalized by N-1 (unbiased estimator).

cummax

cummax() -> bigframes.series.Series

Return cumulative maximum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative maximum.

Parameter
Name Description
axis {{0 or 'index', 1 or 'columns'}}, default 0

The index or the name of the axis. 0 is equivalent to None or 'index'. For Series this parameter is unused and defaults to 0.

Returns
Type Description
bigframes.series.Series Return cumulative maximum of scalar or Series.

cummin

cummin() -> bigframes.series.Series

Return cumulative minimum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative minimum.

Parameters
Name Description
axis {0 or 'index', 1 or 'columns'}, default 0

The index or the name of the axis. 0 is equivalent to None or 'index'. For Series this parameter is unused and defaults to 0.

skipna bool, default True

Exclude NA/null values. If an entire row/column is NA, the result will be NA.

Returns
Type Description
bigframes.series.Series Return cumulative minimum of scalar or Series.

cumprod

cumprod() -> bigframes.series.Series

Return cumulative product over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative product.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([2, np.nan, 5, -1, 0])
>>> s
0     2.0
1    <NA>
2     5.0
3    -1.0
4     0.0
dtype: Float64

By default, NA values are ignored.

>>> s.cumprod()
0     2.0
1    <NA>
2    10.0
3   -10.0
4     0.0
dtype: Float64
Returns
Type Description
bigframes.series.Series Return cumulative sum of scalar or Series.

cumsum

cumsum() -> bigframes.series.Series

Return cumulative sum over a DataFrame or Series axis.

Returns a DataFrame or Series of the same size containing the cumulative sum.

Parameter
Name Description
axis {0 or 'index', 1 or 'columns'}, default 0

The index or the name of the axis. 0 is equivalent to None or 'index'. For Series this parameter is unused and defaults to 0.

Returns
Type Description
scalar or Series Return cumulative sum of scalar or Series.

diff

diff(periods: int = 1) -> bigframes.series.Series

First discrete difference of element.

Calculates the difference of a {klass} element compared with another element in the {klass} (default is element in previous row).

Parameter
Name Description
periods int, default 1

Periods to shift for calculating difference, accepts negative values.

Returns
Type Description
Series First differences of the Series.

div

div(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

divide

divide(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

divmod

divmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]

Return integer division and modulo of Series and other, element-wise (binary operator divmod).

Equivalent to divmod(series, other).

Returns
Type Description
2-Tuple of Series The result of the operation. The result is always consistent with (floordiv, mod) (though pandas may not).

dot

dot(other)

Compute the dot product between the Series and the columns of other.

This method computes the dot product between the Series and another one, or the Series and each columns of a DataFrame, or the Series and each columns of an array.

It can also be called using self @ other in Python >= 3.5.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([0, 1, 2, 3])
>>> other = bpd.Series([-1, 2, -3, 4])
>>> s.dot(other)
np.int64(8)

You can also use the operator @ for the dot product:

>>> s @ other
np.int64(8)
Parameter
Name Description
other Series

The other object to compute the dot product with its columns.

Returns
Type Description
scalar, Series or numpy.ndarray Return the dot product of the Series and other if other is a Series, the Series of the dot product of Series and each rows of other if other is a DataFrame or a numpy.ndarray between the Series and each columns of the numpy array.

drop

drop(
    labels: typing.Any = None,
    *,
    axis: typing.Union[int, str] = 0,
    index: typing.Any = None,
    columns: typing.Union[typing.Hashable, typing.Iterable[typing.Hashable]] = None,
    level: typing.Optional[typing.Union[str, int]] = None
) -> bigframes.series.Series

Return Series with specified index labels removed.

Remove elements of a Series based on specifying the index labels. When using a multi-index, labels on different levels can be removed by specifying the level.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series(data=np.arange(3), index=['A', 'B', 'C'])
>>> s
A    0
B    1
C    2
dtype: Int64

Drop labels B and C:

>>> s.drop(labels=['B', 'C'])
A    0
dtype: Int64

Drop 2nd level label in MultiIndex Series:

>>> import pandas as pd
>>> midx = pd.MultiIndex(levels=[['llama', 'cow', 'falcon'],
...                              ['speed', 'weight', 'length']],
...                      codes=[[0, 0, 0, 1, 1, 1, 2, 2, 2],
...                             [0, 1, 2, 0, 1, 2, 0, 1, 2]])

>>> s = bpd.Series([45, 200, 1.2, 30, 250, 1.5, 320, 1, 0.3],
...               index=midx)
>>> s
llama   speed      45.0
        weight    200.0
        length      1.2
cow     speed      30.0
        weight    250.0
        length      1.5
falcon  speed     320.0
        weight      1.0
        length      0.3
dtype: Float64

>>> s.drop(labels='weight', level=1)
llama   speed      45.0
        length      1.2
cow     speed      30.0
        length      1.5
falcon  speed     320.0
        length      0.3
dtype: Float64
Parameter
Name Description
labels single label or list-like

Index labels to drop.

Exceptions
Type Description
KeyError If none of the labels are found in the index.
Returns
Type Description
bigframes.series.Series Series with specified index labels removed or None if inplace=True.

drop_duplicates

drop_duplicates(*, keep: str = "first") -> bigframes.series.Series

Return Series with duplicate values removed.

Parameter
Name Description
keep {'first', 'last', False}, default 'first'

Method to handle dropping duplicates: 'first' : Drop duplicates except for the first occurrence. 'last' : Drop duplicates except for the last occurrence. False : Drop all duplicates.

Returns
Type Description
bigframes.series.Series Series with duplicates dropped or None if inplace=True.

droplevel

droplevel(
    level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]],
    axis: int | str = 0,
)

Return Series with requested index / column level(s) removed.

Parameters
Name Description
level int, str, or list-like

If a string is given, must be the name of a level If list-like, elements must be names or positional indexes of levels.

axis {0 or 'index', 1 or 'columns'}, default 0

For Series this parameter is unused and defaults to 0.

dropna

dropna(
    *,
    axis: int = 0,
    inplace: bool = False,
    how: typing.Optional[str] = None,
    ignore_index: bool = False
) -> bigframes.series.Series

Return a new Series with missing values removed.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Drop NA values from a Series:

>>> ser = bpd.Series([1., 2., np.nan])
>>> ser
0     1.0
1     2.0
2    <NA>
dtype: Float64

>>> ser.dropna()
0    1.0
1    2.0
dtype: Float64

Empty strings are not considered NA values. None is considered an NA value.

>>> ser = bpd.Series(['2', bpd.NA, '', None, 'I stay'], dtype='object')
>>> ser
0         2
1      <NA>
2
3      <NA>
4    I stay
dtype: string

>>> ser.dropna()
0         2
2
4    I stay
dtype: string
Parameters
Name Description
axis 0 or 'index'

Unused. Parameter needed for compatibility with DataFrame.

inplace bool, default False

Unsupported, do not set.

how str, optional

Not in use. Kept for compatibility.

Returns
Type Description
Series Series with NA entries dropped from it.

duplicated

duplicated(keep: str = "first") -> bigframes.series.Series

Indicate duplicate Series values.

Duplicated values are indicated as True values in the resulting Series. Either all duplicates, all except the first or all except the last occurrence of duplicates can be indicated.

Parameter
Name Description
keep {'first', 'last', False}, default 'first'

Method to handle dropping duplicates: 'first' : Mark duplicates as True except for the first occurrence. 'last' : Mark duplicates as True except for the last occurrence. False : Mark all duplicates as True.

Returns
Type Description
bigframes.series.Series Series indicating whether each value has occurred in the preceding values.

eq

eq(other: object) -> bigframes.series.Series

Return equal of Series and other, element-wise (binary operator eq).

Equivalent to other == series, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
Series The result of the operation.

equals

equals(
    other: typing.Union[bigframes.series.Series, bigframes.dataframe.DataFrame]
) -> bool

Test whether two objects contain the same elements.

This function allows two Series or DataFrames to be compared against each other to see if they have the same shape and elements. NaNs in the same location are considered equal.

The row/column index do not need to have the same type, as long as the values are considered equal. Corresponding columns must be of the same dtype.

Parameter
Name Description
other Series or DataFrame

The other Series or DataFrame to be compared with the first.

Returns
Type Description
bool True if all elements are the same in both objects, False otherwise.

expanding

expanding(min_periods: int = 1) -> bigframes.core.window.Window

Provide expanding window calculations.

Parameter
Name Description
min_periods int, default 1

Minimum number of observations in window required to have a value; otherwise, result is np.nan.

Returns
Type Description
bigframes.core.window.Window Expanding subclass.

explode

explode(*, ignore_index: typing.Optional[bool] = False) -> bigframes.series.Series

Transform each element of a list-like to a row.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([[1, 2, 3], [], [3, 4]])
>>> s.explode()
0       1
0       2
0       3
1    <NA>
2       3
2       4
dtype: Int64
Parameter
Name Description
ignore_index bool, default False

If True, the resulting index will be labeled 0, 1, …, n - 1.

Returns
Type Description
bigframes.series.Series Exploded lists to rows; index will be duplicated for these rows.

ffill

ffill(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by propagating the last valid observation to next valid.

Examples:

>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame([[np.nan, 2, np.nan, 0],
...                     [3, 4, np.nan, 1],
...                     [np.nan, np.nan, np.nan, np.nan],
...                     [np.nan, 3, np.nan, 4]],
...                    columns=list("ABCD")).astype("Float64")
>>> df
      A     B     C     D
0  <NA>   2.0  <NA>   0.0
1   3.0   4.0  <NA>   1.0
2  <NA>  <NA>  <NA>  <NA>
3  <NA>   3.0  <NA>   4.0
<BLANKLINE>
[4 rows x 4 columns]

Fill NA/NaN values in DataFrames:

>>> df.ffill()
      A    B     C    D
0  <NA>  2.0  <NA>  0.0
1   3.0  4.0  <NA>  1.0
2   3.0  4.0  <NA>  1.0
3   3.0  3.0  <NA>  4.0
<BLANKLINE>
[4 rows x 4 columns]

Fill NA/NaN values in Series:

>>> series = bpd.Series([1, np.nan, 2, 3])
>>> series.ffill()
0    1.0
1    1.0
2    2.0
3    3.0
dtype: Float64
Returns
Type Description
Series/DataFrame or None Object with missing values filled.

fillna

fillna(value=None) -> bigframes.series.Series

Fill NA/NaN values using the specified method.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([np.nan, 2, np.nan, -1])
>>> s
0    <NA>
1     2.0
2    <NA>
3    -1.0
dtype: Float64

Replace all NA elements with 0s.

>>> s.fillna(0)
0    0.0
1    2.0
2    0.0
3   -1.0
dtype: Float64

You can use fill values from another Series:

>>> s_fill = bpd.Series([11, 22, 33])
>>> s.fillna(s_fill)
0    11.0
1     2.0
2    33.0
3    -1.0
dtype: Float64
Parameter
Name Description
value scalar, dict, Series, or DataFrame, default None

Value to use to fill holes (e.g. 0).

Returns
Type Description
Series or None Object with missing values filled or None.

filter

filter(
    items: typing.Optional[typing.Iterable] = None,
    like: typing.Optional[str] = None,
    regex: typing.Optional[str] = None,
    axis: typing.Optional[typing.Union[str, int]] = None,
) -> bigframes.series.Series

Subset the dataframe rows or columns according to the specified index labels.

Note that this routine does not filter a dataframe on its contents. The filter is applied to the labels of the index.

Parameters
Name Description
items list-like

Keep labels from axis which are in items.

like str

Keep labels from axis for which "like in label == True".

regex str (regular expression)

Keep labels from axis for which re.search(regex, label) == True.

axis {0 or 'index', 1 or 'columns', None}, default None

The axis to filter on, expressed either as an index (int) or axis name (str). By default this is the info axis, 'columns' for DataFrame. For Series this parameter is unused and defaults to None.

floordiv

floordiv(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return integer division of Series and other, element-wise (binary operator floordiv).

Equivalent to series // other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

ge

ge(other) -> bigframes.series.Series

Get 'greater than or equal to' of Series and other, element-wise (binary operator >=).

Equivalent to series >= other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

get

get(key, default=None)

Get item from object for given key (ex: DataFrame column).

Returns default value if not found.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame(
...     [
...         [24.3, 75.7, "high"],
...         [31, 87.8, "high"],
...         [22, 71.6, "medium"],
...         [35, 95, "medium"],
...     ],
...     columns=["temp_celsius", "temp_fahrenheit", "windspeed"],
...     index=["2014-02-12", "2014-02-13", "2014-02-14", "2014-02-15"],
... )
>>> df
            temp_celsius  temp_fahrenheit windspeed
2014-02-12          24.3             75.7      high
2014-02-13          31.0             87.8      high
2014-02-14          22.0             71.6    medium
2014-02-15          35.0             95.0    medium
<BLANKLINE>
[4 rows x 3 columns]

>>> df.get(["temp_celsius", "windspeed"])
            temp_celsius windspeed
2014-02-12          24.3      high
2014-02-13          31.0      high
2014-02-14          22.0    medium
2014-02-15          35.0    medium
<BLANKLINE>
[4 rows x 2 columns]

>>> ser = df['windspeed']
>>> ser
2014-02-12      high
2014-02-13      high
2014-02-14    medium
2014-02-15    medium
Name: windspeed, dtype: string
>>> ser.get('2014-02-13')
'high'

If the key is not found, the default value will be used.

>>> df.get(["temp_celsius", "temp_kelvin"])
>>> df.get(["temp_celsius", "temp_kelvin"], default="default_value")
'default_value'

groupby

groupby(
    by: typing.Union[
        typing.Hashable,
        bigframes.series.Series,
        typing.Sequence[typing.Union[typing.Hashable, bigframes.series.Series]],
    ] = None,
    axis=0,
    level: typing.Optional[
        typing.Union[int, str, typing.Sequence[int], typing.Sequence[str]]
    ] = None,
    as_index: bool = True,
    *,
    dropna: bool = True
) -> bigframes.core.groupby.SeriesGroupBy

Group Series using a mapper or by a Series of columns.

A groupby operation involves some combination of splitting the object, applying a function, and combining the results. This can be used to group large amounts of data and compute operations on these groups.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

You can group by a named index level.

>>> s = bpd.Series([380, 370., 24., 26.],
...                index=["Falcon", "Falcon", "Parrot", "Parrot"],
...                name="Max Speed")
>>> s.index.name="Animal"
>>> s
Animal
Falcon    380.0
Falcon    370.0
Parrot     24.0
Parrot     26.0
Name: Max Speed, dtype: Float64
>>> s.groupby("Animal").mean()
Animal
Falcon    375.0
Parrot     25.0
Name: Max Speed, dtype: Float64

You can also group by more than one index levels.

>>> import pandas as pd
>>> s = bpd.Series([380, 370., 24., 26.],
...                index=pd.MultiIndex.from_tuples(
...                    [("Falcon", "Clear"),
...                     ("Falcon", "Cloudy"),
...                     ("Parrot", "Clear"),
...                     ("Parrot", "Clear")],
...                    names=["Animal", "Sky"]),
...                name="Max Speed")
>>> s
Animal    Sky
Falcon  Clear     380.0
        Cloudy    370.0
Parrot  Clear      24.0
        Clear      26.0
Name: Max Speed, dtype: Float64

>>> s.groupby("Animal").mean()
Animal
Falcon    375.0
Parrot     25.0
Name: Max Speed, dtype: Float64

>>> s.groupby("Sky").mean()
Sky
Clear     143.333333
Cloudy         370.0
Name: Max Speed, dtype: Float64

>>> s.groupby(["Animal", "Sky"]).mean()
Animal  Sky
Falcon  Clear     380.0
        Cloudy    370.0
Parrot  Clear      25.0
Name: Max Speed, dtype: Float64

You can also group by values in a Series provided the index matches with the original series.

>>> df = bpd.DataFrame({'Animal': ['Falcon', 'Falcon', 'Parrot', 'Parrot'],
...                     'Max Speed': [380., 370., 24., 26.],
...                     'Age': [10., 20., 4., 6.]})
>>> df
Animal  Max Speed   Age
0  Falcon      380.0  10.0
1  Falcon      370.0  20.0
2  Parrot       24.0   4.0
3  Parrot       26.0   6.0
<BLANKLINE>
[4 rows x 3 columns]

>>> df['Max Speed'].groupby(df['Animal']).mean()
Animal
Falcon    375.0
Parrot     25.0
Name: Max Speed, dtype: Float64

>>> df['Age'].groupby(df['Animal']).max()
Animal
Falcon    20.0
Parrot     6.0
Name: Age, dtype: Float64
Parameters
Name Description
by mapping, function, label, pd.Grouper or list of such, default None

Used to determine the groups for the groupby. If by is a function, it's called on each value of the object's index. If a dict or Series is passed, the Series or dict VALUES will be used to determine the groups (the Series' values are first aligned; see .align() method). If a list or ndarray of length equal to the selected axis is passed (see the groupby user guide https://pandas.pydata.org/pandas-docs/stable/user_guide/groupby.html#splitting-an-object-into-groups_), the values are used as-is to determine the groups. A label or list of labels may be passed to group by the columns in self. Notice that a tuple is interpreted as a (single) key.

axis {0 or 'index', 1 or 'columns'}, default 0

Split along rows (0) or columns (1). For Series this parameter is unused and defaults to 0.

level int, level name, or sequence of such, default None

If the axis is a MultiIndex (hierarchical), group by a particular level or levels. Do not specify both by and level.

as_index bool, default True

Return object with group labels as the index. Only relevant for DataFrame input. as_index=False is effectively "SQL-style" grouped output. This argument has no effect on filtrations (see the "filtrations in the user guide" https://pandas.pydata.org/docs/dev/user_guide/groupby.html#filtration), such as head(), tail(), nth() and in transformations (see the "transformations in the user guide" https://pandas.pydata.org/docs/dev/user_guide/groupby.html#transformation).

Returns
Type Description
bigframes.core.groupby.SeriesGroupBy Returns a groupby object that contains information about the groups.

gt

gt(other) -> bigframes.series.Series

Get 'less than or equal to' of Series and other, element-wise (binary operator <=).

Equivalent to series <= other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

head

head(n: int = 5) -> bigframes.series.Series

Return the first n rows.

This function returns the first n rows for the object based on position. It is useful for quickly testing if your object has the right type of data in it.

For negative values of n, this function returns all rows except the last |n| rows, equivalent to df[:n].

If n is larger than the number of rows, this function returns all rows.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame({'animal': ['alligator', 'bee', 'falcon', 'lion',
...                     'monkey', 'parrot', 'shark', 'whale', 'zebra']})
>>> df
    animal
0  alligator
1        bee
2     falcon
3       lion
4     monkey
5     parrot
6      shark
7      whale
8      zebra
<BLANKLINE>
[9 rows x 1 columns]

Viewing the first 5 lines:

>>> df.head()
    animal
0  alligator
1        bee
2     falcon
3       lion
4     monkey
<BLANKLINE>
[5 rows x 1 columns]

Viewing the first n lines (three in this case):

>>> df.head(3)
    animal
0  alligator
1        bee
2     falcon
<BLANKLINE>
[3 rows x 1 columns]

For negative values of n:

>>> df.head(-3)
    animal
0  alligator
1        bee
2     falcon
3       lion
4     monkey
5     parrot
<BLANKLINE>
[6 rows x 1 columns]
Parameter
Name Description
n int, default 5

Default 5. Number of rows to select.

Returns
Type Description
same type as caller The first n rows of the caller object.

idxmax

idxmax() -> typing.Hashable

Return the row label of the maximum value.

If multiple values equal the maximum, the first row label with that value is returned.

Returns
Type Description
Index Label of the maximum value.

idxmin

idxmin() -> typing.Hashable

Return the row label of the minimum value.

If multiple values equal the minimum, the first row label with that value is returned.

Returns
Type Description
Index Label of the minimum value.

interpolate

interpolate(method: str = "linear") -> bigframes.series.Series

Fill NaN values using an interpolation method.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame({
...     'A': [1, 2, 3, None, None, 6],
...     'B': [None, 6, None, 2, None, 3],
...     }, index=[0, 0.1, 0.3, 0.7, 0.9, 1.0])
>>> df.interpolate()
       A     B
0.0  1.0  <NA>
0.1  2.0   6.0
0.3  3.0   4.0
0.7  4.0   2.0
0.9  5.0   2.5
1.0  6.0   3.0
<BLANKLINE>
[6 rows x 2 columns]
>>> df.interpolate(method="values")
            A         B
0.0       1.0      <NA>
0.1       2.0       6.0
0.3       3.0  4.666667
0.7  4.714286       2.0
0.9  5.571429  2.666667
1.0       6.0       3.0
<BLANKLINE>
[6 rows x 2 columns]
Parameter
Name Description
method str, default 'linear'

Interpolation technique to use. Only 'linear' supported. 'linear': Ignore the index and treat the values as equally spaced. This is the only method supported on MultiIndexes. 'index', 'values': use the actual numerical values of the index. 'pad': Fill in NaNs using existing values. 'nearest', 'zero', 'slinear': Emulates scipy.interpolate.interp1d

Returns
Type Description
Series Returns the same object type as the caller, interpolated at some or all NaN values

isin

isin(values) -> "Series" | None

Whether elements in Series are contained in values.

Return a boolean Series showing whether each element in the Series matches an element in the passed sequence of values exactly.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series(['llama', 'cow', 'llama', 'beetle', 'llama',
...                 'hippo'], name='animal')
>>> s
0     llama
1       cow
2     llama
3    beetle
4     llama
5     hippo
Name: animal, dtype: string

>>> s.isin(['cow', 'llama'])
0     True
1     True
2     True
3    False
4     True
5    False
Name: animal, dtype: boolean

Strings and integers are distinct and are therefore not comparable:

>>> bpd.Series([1]).isin(['1'])
0    False
dtype: boolean
>>> bpd.Series([1.1]).isin(['1.1'])
0    False
dtype: boolean
Parameter
Name Description
values list-like

The sequence of values to test. Passing in a single string will raise a TypeError. Instead, turn a single string into a list of one element.

Exceptions
Type Description
TypeError If input is not list-like.
Returns
Type Description
bigframes.series.Series Series of booleans indicating if each element is in values.

isna

isna() -> bigframes.series.Series

Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values get mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> import numpy as np

>>> df = bpd.DataFrame(dict(
...         age=[5, 6, np.nan],
...         born=[bpd.NA, "1940-04-25", "1940-04-25"],
...         name=['Alfred', 'Batman', ''],
...         toy=[None, 'Batmobile', 'Joker'],
... ))
>>> df
    age        born    name        toy
0   5.0        <NA>  Alfred       <NA>
1   6.0  1940-04-25  Batman  Batmobile
2  <NA>  1940-04-25              Joker
<BLANKLINE>
[3 rows x 4 columns]

Show which entries in a DataFrame are NA:

>>> df.isna()
    age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False
<BLANKLINE>
[3 rows x 4 columns]

>>> df.isnull()
    age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False
<BLANKLINE>
[3 rows x 4 columns]

Show which entries in a Series are NA:

>>> ser = bpd.Series([5, None, 6, np.nan, bpd.NA])
>>> ser
0       5
1    <NA>
2       6
3    <NA>
4    <NA>
dtype: Int64

>>> ser.isna()
0    False
1     True
2    False
3     True
4     True
dtype: boolean

>>> ser.isnull()
0    False
1     True
2    False
3     True
4     True
dtype: boolean

isnull

isnull() -> bigframes.series.Series

Detect missing values.

Return a boolean same-sized object indicating if the values are NA. NA values get mapped to True values. Everything else gets mapped to False values. Characters such as empty strings '' or numpy.inf are not considered NA values.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> import numpy as np

>>> df = bpd.DataFrame(dict(
...         age=[5, 6, np.nan],
...         born=[bpd.NA, "1940-04-25", "1940-04-25"],
...         name=['Alfred', 'Batman', ''],
...         toy=[None, 'Batmobile', 'Joker'],
... ))
>>> df
    age        born    name        toy
0   5.0        <NA>  Alfred       <NA>
1   6.0  1940-04-25  Batman  Batmobile
2  <NA>  1940-04-25              Joker
<BLANKLINE>
[3 rows x 4 columns]

Show which entries in a DataFrame are NA:

>>> df.isna()
    age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False
<BLANKLINE>
[3 rows x 4 columns]

>>> df.isnull()
    age   born   name    toy
0  False   True  False   True
1  False  False  False  False
2   True  False  False  False
<BLANKLINE>
[3 rows x 4 columns]

Show which entries in a Series are NA:

>>> ser = bpd.Series([5, None, 6, np.nan, bpd.NA])
>>> ser
0       5
1    <NA>
2       6
3    <NA>
4    <NA>
dtype: Int64

>>> ser.isna()
0    False
1     True
2    False
3     True
4     True
dtype: boolean

>>> ser.isnull()
0    False
1     True
2    False
3     True
4     True
dtype: boolean

kurt

kurt()

Return unbiased kurtosis over requested axis.

Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.

Returns
Type Description
scalar or scalar Unbiased kurtosis over requested axis.

kurtosis

kurtosis()

Return unbiased kurtosis over requested axis.

Kurtosis obtained using Fisher’s definition of kurtosis (kurtosis of normal == 0.0). Normalized by N-1.

Returns
Type Description
scalar or scalar Unbiased kurtosis over requested axis.

le

le(other) -> bigframes.series.Series

Get 'less than or equal to' of Series and other, element-wise (binary operator <=).

Equivalent to series <= other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the comparison.

lt

lt(other) -> bigframes.series.Series

Get 'less than' of Series and other, element-wise (binary operator <).

Equivalent to series < other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

map

map(
    arg: typing.Union[typing.Mapping, bigframes.series.Series],
    na_action: typing.Optional[str] = None,
    *,
    verify_integrity: bool = False
) -> bigframes.series.Series

Map values of Series according to an input mapping or function.

Used for substituting each value in a Series with another value, that may be derived from a remote function, dict, or a Series.

If arg is a remote function, the overhead for remote functions applies. If mapping with a dict, fully deferred computation is possible. If mapping with a Series, fully deferred computation is only possible if verify_integrity=False.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series(['cat', 'dog', bpd.NA, 'rabbit'])
>>> s
0       cat
1       dog
2      <NA>
3    rabbit
dtype: string

map can accepts a dict. Values that are not found in the dict are converted to NA:

>>> s.map({'cat': 'kitten', 'dog': 'puppy'})
0    kitten
1     puppy
2      <NA>
3      <NA>
dtype: string

It also accepts a remote function:

>>> @bpd.remote_function()
... def my_mapper(val: str) -> str:
...     vowels = ["a", "e", "i", "o", "u"]
...     if val:
...         return "".join([
...             ch.upper() if ch in vowels else ch for ch in val
...         ])
...     return "N/A"

>>> s.map(my_mapper)
0       cAt
1       dOg
2       N/A
3    rAbbIt
dtype: string
Parameter
Name Description
arg function, Mapping, Series

remote function, collections.abc.Mapping subclass or Series Mapping correspondence.

Returns
Type Description
Series Same index as caller.

mask

mask(cond, other=None) -> bigframes.series.Series

Replace values where the condition is True.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([10, 11, 12, 13, 14])
>>> s
0    10
1    11
2    12
3    13
4    14
dtype: Int64

You can mask the values in the Series based on a condition. The values matching the condition would be masked. The condition can be provided in formm of a Series.

>>> s.mask(s % 2 == 0)
0    <NA>
1      11
2    <NA>
3      13
4    <NA>
dtype: Int64

You can specify a custom mask value.

>>> s.mask(s % 2 == 0, -1)
0    -1
1    11
2    -1
3    13
4    -1
dtype: Int64
>>> s.mask(s % 2 == 0, 100*s)
0    1000
1      11
2    1200
3      13
4    1400
dtype: Int64

You can also use a remote function to evaluate the mask condition. This is useful in situation such as the following, where the mask condition is evaluated based on a complicated business logic which cannot be expressed in form of a Series.

>>> @bpd.remote_function(reuse=False)
... def should_mask(name: str) -> bool:
...     hash = 0
...     for char_ in name:
...         hash += ord(char_)
...     return hash % 2 == 0

>>> s = bpd.Series(["Alice", "Bob", "Caroline"])
>>> s
0       Alice
1         Bob
2    Caroline
dtype: string
>>> s.mask(should_mask)
0        <NA>
1         Bob
2    Caroline
dtype: string
>>> s.mask(should_mask, "REDACTED")
0    REDACTED
1         Bob
2    Caroline
dtype: string

Simple vectorized (i.e. they only perform operations supported on a Series) lambdas or python functions can be used directly.

>>> nums = bpd.Series([1, 2, 3, 4], name="nums")
>>> nums
0    1
1    2
2    3
3    4
Name: nums, dtype: Int64
>>> nums.mask(lambda x: (x+1) % 2 == 1)
0        1
1     <NA>
2        3
3     <NA>
Name: nums, dtype: Int64

>>> def is_odd(num):
...     return num % 2 == 1
>>> nums.mask(is_odd)
0     <NA>
1        2
2     <NA>
3        4
Name: nums, dtype: Int64
Parameters
Name Description
cond bool Series/DataFrame, array-like, or callable

Where cond is False, keep the original value. Where True, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and should return boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).

other scalar, Series/DataFrame, or callable

Entries where cond is True are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and should return scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value (np.nan for numpy dtypes, pd.NA for extension dtypes).

Returns
Type Description
bigframes.series.Series Series after the replacement.

max

max() -> typing.Any

Return the maximum of the values over the requested axis.

If you want the index of the maximum, use idxmax. This is the equivalent of the numpy.ndarray method argmax.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Calculating the max of a Series:

>>> s = bpd.Series([1, 3])
>>> s
0    1
1    3
dtype: Int64
>>> s.max()
np.int64(3)

Calculating the max of a Series containing NA values:

>>> s = bpd.Series([1, 3, bpd.NA])
>>> s
0       1
1       3
2    <NA>
dtype: Int64
>>> s.max()
np.int64(3)
Returns
Type Description
scalar Scalar.

mean

mean() -> float

Return the mean of the values over the requested axis.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Calculating the mean of a Series:

>>> s = bpd.Series([1, 3])
>>> s
0    1
1    3
dtype: Int64
>>> s.mean()
np.float64(2.0)

Calculating the mean of a Series containing NA values:

>>> s = bpd.Series([1, 3, bpd.NA])
>>> s
0       1
1       3
2    <NA>
dtype: Int64
>>> s.mean()
np.float64(2.0)
Returns
Type Description
scalar Scalar.

median

median(*, exact: bool = True) -> float

Return the median of the values over the requested axis.

Parameter
Name Description
exact bool. default True

Default True. Get the exact median instead of an approximate one.

Returns
Type Description
scalar Scalar.

min

min() -> typing.Any

Return the maximum of the values over the requested axis.

If you want the index of the minimum, use idxmin. This is the equivalent of the numpy.ndarray method argmin.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Calculating the min of a Series:

>>> s = bpd.Series([1, 3])
>>> s
0    1
1    3
dtype: Int64
>>> s.min()
np.int64(1)

Calculating the min of a Series containing NA values:

>>> s = bpd.Series([1, 3, bpd.NA])
>>> s
0       1
1       3
2    <NA>
dtype: Int64
>>> s.min()
np.int64(1)
Returns
Type Description
scalar Scalar.

mod

mod(other) -> bigframes.series.Series

Return modulo of Series and other, element-wise (binary operator mod).

Equivalent to series % other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

mode

mode() -> bigframes.series.Series

Return the mode(s) of the Series.

The mode is the value that appears most often. There can be multiple modes.

Always returns Series even if only one value is returned.

Returns
Type Description
bigframes.series.Series Modes of the Series in sorted order.

mul

mul(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

Equivalent to other * series, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

multiply

multiply(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

Equivalent to other * series, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

ne

ne(other: object) -> bigframes.series.Series

Return not equal of Series and other, element-wise (binary operator ne).

Equivalent to other != series, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

nlargest

nlargest(n: int = 5, keep: str = "first") -> bigframes.series.Series

Return the largest n elements.

Parameters
Name Description
n int, default 5

Return this many descending sorted values.

keep {'first', 'last', 'all'}, default 'first'

When there are duplicate values that cannot all fit in a Series of n elements: first : return the first n occurrences in order of appearance. last : return the last n occurrences in reverse order of appearance. all : keep all occurrences. This can result in a Series of size larger than n.

Returns
Type Description
bigframes.series.Series The n largest values in the Series, sorted in decreasing order.

notna

notna() -> bigframes.series.Series

Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values. NA values get mapped to False values.

Returns
Type Description
NDFrame Mask of bool values for each element that indicates whether an element is not an NA value.

notnull

notnull() -> bigframes.series.Series

Detect existing (non-missing) values.

Return a boolean same-sized object indicating if the values are not NA. Non-missing values get mapped to True. Characters such as empty strings '' or numpy.inf are not considered NA values. NA values get mapped to False values.

Returns
Type Description
NDFrame Mask of bool values for each element that indicates whether an element is not an NA value.

nsmallest

nsmallest(n: int = 5, keep: str = "first") -> bigframes.series.Series

Return the smallest n elements.

Parameters
Name Description
n int, default 5

Return this many ascending sorted values.

keep {'first', 'last', 'all'}, default 'first'

When there are duplicate values that cannot all fit in a Series of n elements: first : return the first n occurrences in order of appearance. last : return the last n occurrences in reverse order of appearance. all : keep all occurrences. This can result in a Series of size larger than n.

Returns
Type Description
bigframes.series.Series The n smallest values in the Series, sorted in increasing order.

nunique

nunique() -> int

Return number of unique elements in the object.

Excludes NA values by default.

Returns
Type Description
int number of unique elements in the object.

pad

pad(*, limit: typing.Optional[int] = None) -> bigframes.series.Series

Fill NA/NaN values by propagating the last valid observation to next valid.

Examples:

>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame([[np.nan, 2, np.nan, 0],
...                     [3, 4, np.nan, 1],
...                     [np.nan, np.nan, np.nan, np.nan],
...                     [np.nan, 3, np.nan, 4]],
...                    columns=list("ABCD")).astype("Float64")
>>> df
      A     B     C     D
0  <NA>   2.0  <NA>   0.0
1   3.0   4.0  <NA>   1.0
2  <NA>  <NA>  <NA>  <NA>
3  <NA>   3.0  <NA>   4.0
<BLANKLINE>
[4 rows x 4 columns]

Fill NA/NaN values in DataFrames:

>>> df.ffill()
      A    B     C    D
0  <NA>  2.0  <NA>  0.0
1   3.0  4.0  <NA>  1.0
2   3.0  4.0  <NA>  1.0
3   3.0  3.0  <NA>  4.0
<BLANKLINE>
[4 rows x 4 columns]

Fill NA/NaN values in Series:

>>> series = bpd.Series([1, np.nan, 2, 3])
>>> series.ffill()
0    1.0
1    1.0
2    2.0
3    3.0
dtype: Float64
Returns
Type Description
Series/DataFrame or None Object with missing values filled.

pct_change

pct_change(periods: int = 1) -> bigframes.series.Series

Fractional change between the current and a prior element.

Computes the fractional change from the immediately previous row by default. This is useful in comparing the fraction of change in a time series of elements.

Parameter
Name Description
periods int, default 1

Periods to shift for forming percent change.

Returns
Type Description
Series or DataFrame The same type as the calling object.

peek

peek(n: int = 5, *, force: bool = True) -> pandas.core.series.Series

Preview n arbitrary elements from the series without guarantees about row selection or ordering.

Series.peek(force=False) will always be very fast, but will not succeed if data requires full data scanning. Using force=True will always succeed, but may be perform queries. Query results will be cached so that future steps will benefit from these queries.

Parameters
Name Description
n int, default 5

The number of rows to select from the series. Which N rows are returned is non-deterministic.

force bool, default True

If the data cannot be peeked efficiently, the series will instead be fully materialized as part of the operation if force=True. If force=False, the operation will throw a ValueError.

Exceptions
Type Description
ValueError If force=False and data cannot be efficiently peeked.
Returns
Type Description
pandas.Series A pandas Series with n rows.

pipe

pipe(func: Callable[..., T] | tuple[Callable[..., T], str], *args, **kwargs) -> T

Apply chainable functions that expect Series or DataFrames.

Examples:

Constructing a income DataFrame from a dictionary.

>>> import bigframes.pandas as bpd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None

>>> data = [[8000, 1000], [9500, np.nan], [5000, 2000]]
>>> df = bpd.DataFrame(data, columns=['Salary', 'Others'])
>>> df
   Salary  Others
0    8000  1000.0
1    9500    <NA>
2    5000  2000.0
<BLANKLINE>
[3 rows x 2 columns]

Functions that perform tax reductions on an income DataFrame.

>>> def subtract_federal_tax(df):
...     return df * 0.9
>>> def subtract_state_tax(df, rate):
...     return df * (1 - rate)
>>> def subtract_national_insurance(df, rate, rate_increase):
...     new_rate = rate + rate_increase
...     return df * (1 - new_rate)

Instead of writing

>>> subtract_national_insurance(
...     subtract_state_tax(subtract_federal_tax(df), rate=0.12),
...     rate=0.05,
...     rate_increase=0.02)  # doctest: +SKIP

You can write

>>> (
...     df.pipe(subtract_federal_tax)
...     .pipe(subtract_state_tax, rate=0.12)
...     .pipe(subtract_national_insurance, rate=0.05, rate_increase=0.02)
... )
    Salary   Others
0  5892.48   736.56
1  6997.32     <NA>
2   3682.8  1473.12
<BLANKLINE>
[3 rows x 2 columns]

If you have a function that takes the data as (say) the second argument, pass a tuple indicating which keyword expects the data. For example, suppose national_insurance takes its data as df in the second argument:

>>> def subtract_national_insurance(rate, df, rate_increase):
...     new_rate = rate + rate_increase
...     return df * (1 - new_rate)
>>> (
...     df.pipe(subtract_federal_tax)
...     .pipe(subtract_state_tax, rate=0.12)
...     .pipe(
...         (subtract_national_insurance, 'df'),
...         rate=0.05,
...         rate_increase=0.02
...     )
... )
    Salary   Others
0  5892.48   736.56
1  6997.32     <NA>
2   3682.8  1473.12
<BLANKLINE>
[3 rows x 2 columns]
Parameters
Name Description
args iterable, optional

Positional arguments passed into func.

kwargs mapping, optional

A dictionary of keyword arguments passed into func.

func function

Function to apply to this object. args, and kwargs are passed into func. Alternatively a (callable, data_keyword) tuple where data_keyword is a string indicating the keyword of callable that expects this object.

pow

pow(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return Exponential power of series and other, element-wise (binary operator pow).

Equivalent to series ** other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

prod

prod() -> float

Return the product of the values over the requested axis.

Returns
Type Description
scalar Scalar.

product

product() -> float

Return the product of the values over the requested axis.

Returns
Type Description
scalar Scalar.

quantile

quantile(
    q: typing.Union[float, typing.Sequence[float]] = 0.5
) -> typing.Union[bigframes.series.Series, float]

Return value at the given quantile.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> s = bpd.Series([1, 2, 3, 4])
>>> s.quantile(.5)
np.float64(2.5)
>>> s.quantile([.25, .5, .75])
0.25    1.75
0.5      2.5
0.75    3.25
dtype: Float64
Parameter
Name Description
q float or array-like, default 0.5 (50% quantile)

The quantile(s) to compute, which can lie in range: 0 <= q <= 1.

Returns
Type Description
float or Series If q is an array, a Series will be returned where the index is q and the values are the quantiles, otherwise a float will be returned.

radd

radd(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return addition of Series and other, element-wise (binary operator radd).

Equivalent to other + series, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

rank

rank(
    axis=0,
    method: str = "average",
    numeric_only=False,
    na_option: str = "keep",
    ascending: bool = True,
) -> bigframes.series.Series

Compute numerical data ranks (1 through n) along axis.

By default, equal values are assigned a rank that is the average of the ranks of those values.

Parameters
Name Description
method {'average', 'min', 'max', 'first', 'dense'}, default 'average'

How to rank the group of records that have the same value (i.e. ties): average: average rank of the group, min: lowest rank in the group max: highest rank in the group, first: ranks assigned in order they appear in the array, dense`: like 'min', but rank always increases by 1 between groups.

numeric_only bool, default False

For DataFrame objects, rank only numeric columns if set to True.

na_option {'keep', 'top', 'bottom'}, default 'keep'

How to rank NaN values: keep: assign NaN rank to NaN values, , top: assign lowest rank to NaN values, bottom: assign highest rank to NaN values.

ascending bool, default True

Whether or not the elements should be ranked in ascending order.

Returns
Type Description
same type as caller Return a Series or DataFrame with data ranks as values.

rdiv

rdiv(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator rtruediv).

Equivalent to other / series, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

rdivmod

rdivmod(other) -> typing.Tuple[bigframes.series.Series, bigframes.series.Series]

Return integer division and modulo of Series and other, element-wise (binary operator rdivmod).

Equivalent to other divmod series.

Returns
Type Description
2-Tuple of Series The result of the operation. The result is always consistent with (rfloordiv, rmod) (though pandas may not).

reindex

reindex(index=None, *, validate: typing.Optional[bool] = None)

Conform Series to new index with optional filling logic.

Places NA/NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False.

Parameter
Name Description
index array-like, optional

New labels for the index. Preferably an Index object to avoid duplicating data.

Returns
Type Description
Series Series with changed index.

reindex_like

reindex_like(
    other: bigframes.series.Series, *, validate: typing.Optional[bool] = None
)

Return an object with matching indices as other object.

Conform the object to the same index on all axes. Optional filling logic, placing Null in locations having no value in the previous index.

Parameter
Name Description
other Object of the same data type

Its row and column indices are used to define the new indices of this object.

Returns
Type Description
Series or DataFrame Same type as caller, but with changed indices on each axis.

rename

rename(
    index: typing.Union[typing.Hashable, typing.Mapping[typing.Any, typing.Any]] = None,
    **kwargs
) -> bigframes.series.Series

Alter Series index labels or name.

Function / dict values must be unique (1-to-1). Labels not contained in a dict / Series will be left as-is. Extra labels listed don't throw an error.

Alternatively, change Series.name with a scalar value.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 3])
>>> s
0    1
1    2
2    3
dtype: Int64

You can changes the Series name by specifying a string scalar:

>>> s.rename("my_name")
0    1
1    2
2    3
Name: my_name, dtype: Int64

You can change the labels by specifying a mapping:

>>> s.rename({1: 3, 2: 5})
0    1
3    2
5    3
dtype: Int64
Parameter
Name Description
index scalar, hashable sequence, dict-like or function optional

Functions or dict-like are transformations to apply to the index. Scalar or hashable sequence-like will alter the Series.name attribute.

Returns
Type Description
bigframes.series.Series Series with index labels.

rename_axis

rename_axis(
    mapper: typing.Union[typing.Hashable, typing.Sequence[typing.Hashable]], **kwargs
) -> bigframes.series.Series

Set the name of the axis for the index or columns.

Parameter
Name Description
mapper scalar, list-like, optional

Value to set the axis name attribute.

Returns
Type Description
bigframes.series.Series Series with the name of the axis set.

reorder_levels

reorder_levels(
    order: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]],
    axis: int | str = 0,
)

Rearrange index levels using input order.

May not drop or duplicate levels.

Parameters
Name Description
order list of int representing new level order

Reference level by number or key.

axis {0 or 'index', 1 or 'columns'}, default 0

For Series this parameter is unused and defaults to 0.

replace

replace(to_replace: typing.Any, value: typing.Any = None, *, regex: bool = False)

Replace values given in to_replace with value.

Values of the Series/DataFrame are replaced with other values dynamically. This differs from updating with .loc or .iloc, which require you to specify a location to update with some value.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 3, 4, 5])
>>> s
0    1
1    2
2    3
3    4
4    5
dtype: Int64

>>> s.replace(1, 5)
0    5
1    2
2    3
3    4
4    5
dtype: Int64

You can replace a list of values:

>>> s.replace([1, 3, 5], -1)
0    -1
1     2
2    -1
3     4
4    -1
dtype: Int64

You can use a replacement mapping:

>>> s.replace({1: 5, 3: 10})
0     5
1     2
2    10
3     4
4     5
dtype: Int64

With a string Series you can use a simple string replacement or a regex replacement:

>>> s = bpd.Series(["Hello", "Another Hello"])
>>> s.replace("Hello", "Hi")
0               Hi
1    Another Hello
dtype: string

>>> s.replace("Hello", "Hi", regex=True)
0            Hi
1    Another Hi
dtype: string

>>> s.replace("^Hello", "Hi", regex=True)
0               Hi
1    Another Hello
dtype: string

>>> s.replace("Hello$", "Hi", regex=True)
0            Hi
1    Another Hi
dtype: string

>>> s.replace("[Hh]e", "__", regex=True)
0            __llo
1    Anot__r __llo
dtype: string
Parameters
Name Description
to_replace str, regex, list, int, float or None

How to find the values that will be replaced. * numeric, str or regex: - numeric: numeric values equal to to_replace will be replaced with value - str: string exactly matching to_replace will be replaced with value - regex: regexs matching to_replace will be replaced with value * list of str, regex, or numeric: - First, if to_replace and value are both lists, they must be the same length. - Second, if regex=True then all of the strings in both lists will be interpreted as regexs otherwise they will match directly. This doesn't matter much for value since there are only a few possible substitution regexes you can use. - str, regex and numeric rules apply as above.

value scalar, default None

Value to replace any values matching to_replace with. For a DataFrame a dict of values can be used to specify which value to use for each column (columns not in the dict will not be filled). Regular expressions, strings and lists or dicts of such objects are also allowed.

regex bool, default False

Whether to interpret to_replace and/or value as regular expressions. If this is True then to_replace must be a string.

Exceptions
Type Description
TypeError * If to_replace is not a scalar, array-like, dict, or None * If to_replace is a dict and value is not a list, dict, ndarray, or Series * If to_replace is None and regex is not compilable into a regular expression or is a list, dict, ndarray, or Series. * When replacing multiple bool or datetime64 objects and the arguments to to_replace does not match the type of the value being replaced
Returns
Type Description
Series/DataFrame Object after replacement.

reset_index

reset_index(
    *, name: typing.Optional[str] = None, drop: bool = False
) -> bigframes.dataframe.DataFrame | bigframes.series.Series

Generate a new DataFrame or Series with the index reset.

This is useful when the index needs to be treated as a column, or when the index is meaningless and needs to be reset to the default before another operation.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 3, 4], name='foo',
...                index=['a', 'b', 'c', 'd'])
>>> s.index.name = "idx"
>>> s
idx
a    1
b    2
c    3
d    4
Name: foo, dtype: Int64

Generate a DataFrame with default index.

>>> s.reset_index()
    idx  foo
0     a    1
1     b    2
2     c    3
3     d    4
<BLANKLINE>
[4 rows x 2 columns]

To specify the name of the new column use name param.

>>> s.reset_index(name="bar")
    idx   bar
0     a    1
1     b    2
2     c    3
3     d    4
<BLANKLINE>
[4 rows x 2 columns]

To generate a new Series with the default index set param drop=True.

>>> s.reset_index(drop=True)
0    1
1    2
2    3
3    4
Name: foo, dtype: Int64
Parameters
Name Description
drop bool, default False

Just reset the index, without inserting it as a column in the new DataFrame.

name object, optional

The name to use for the column containing the original Series values. Uses self.name by default. This argument is ignored when drop is True.

rfloordiv

rfloordiv(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return integer division of Series and other, element-wise (binary operator rfloordiv).

Equivalent to other // series, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

rmod

rmod(other) -> bigframes.series.Series

Return modulo of Series and other, element-wise (binary operator mod).

Equivalent to series % other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

rmul

rmul(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return multiplication of Series and other, element-wise (binary operator mul).

Equivalent to series * others, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
Series The result of the operation.

rolling

rolling(window: int, min_periods=None) -> bigframes.core.window.Window

Provide rolling window calculations.

Parameters
Name Description
window int, timedelta, str, offset, or BaseIndexer subclass

Size of the moving window. If an integer, the fixed number of observations used for each window. If a timedelta, str, or offset, the time period of each window. Each window will be a variable sized based on the observations included in the time-period. This is only valid for datetime-like indexes. To learn more about the offsets & frequency strings, please see this link https://pandas.pydata.org/pandas-docs/stable/user_guide/timeseries.html#offset-aliases__. If a BaseIndexer subclass, the window boundaries based on the defined get_window_bounds method. Additional rolling keyword arguments, namely min_periods, center, closed and step will be passed to get_window_bounds.

min_periods int, default None

Minimum number of observations in window required to have a value; otherwise, result is np.nan. For a window that is specified by an offset, min_periods will default to 1. For a window that is specified by an integer, min_periods will default to the size of the window.

Returns
Type Description
bigframes.core.window.Window Window subclass if a win_type is passed. Rolling subclass if win_type is not passed.

round

round(decimals=0) -> bigframes.series.Series

Round each value in a Series to the given number of decimals.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([0.1, 1.3, 2.7])
>>> s.round()
0    0.0
1    1.0
2    3.0
dtype: Float64

>>> s = bpd.Series([0.123, 1.345, 2.789])
>>> s.round(decimals=2)
0    0.12
1    1.34
2    2.79
dtype: Float64
Parameter
Name Description
decimals int, default 0

Number of decimal places to round to. If decimals is negative, it specifies the number of positions to the left of the decimal point.

Returns
Type Description
bigframes.series.Series Rounded values of the Series.

rpow

rpow(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return Exponential power of series and other, element-wise (binary operator rpow).

Equivalent to other ** series, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

rsub

rsub(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator rsub).

Equivalent to other - series, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

rtruediv

rtruediv(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator rtruediv).

Equivalent to other / series, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

sample

sample(
    n: typing.Optional[int] = None,
    frac: typing.Optional[float] = None,
    *,
    random_state: typing.Optional[int] = None,
    sort: typing.Optional[typing.Union[bool, typing.Literal["random"]]] = "random"
) -> bigframes.series.Series

Return a random sample of items from an axis of object.

You can use random_state for reproducibility.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame({'num_legs': [2, 4, 8, 0],
...                     'num_wings': [2, 0, 0, 0],
...                     'num_specimen_seen': [10, 2, 1, 8]},
...                    index=['falcon', 'dog', 'spider', 'fish'])
>>> df
        num_legs  num_wings  num_specimen_seen
falcon         2          2                 10
dog            4          0                  2
spider         8          0                  1
fish           0          0                  8
<BLANKLINE>
[4 rows x 3 columns]

Fetch one random row from the DataFrame (Note that we use random_state to ensure reproducibility of the examples):

>>> df.sample(random_state=1)
     num_legs  num_wings  num_specimen_seen
dog         4          0                  2
<BLANKLINE>
[1 rows x 3 columns]

A random 50% sample of the DataFrame:

>>> df.sample(frac=0.5, random_state=1)
      num_legs  num_wings  num_specimen_seen
dog          4          0                  2
fish         0          0                  8
<BLANKLINE>
[2 rows x 3 columns]

Extract 3 random elements from the Series df['num_legs']:

>>> s = df['num_legs']
>>> s.sample(n=3, random_state=1)
dog       4
fish      0
spider    8
Name: num_legs, dtype: Int64
Parameters
Name Description
n Optional[int], default None

Number of items from axis to return. Cannot be used with frac. Default = 1 if frac = None.

frac Optional[float], default None

Fraction of axis items to return. Cannot be used with n.

random_state Optional[int], default None

Seed for random number generator.

sort Optional[bool|Literal["random"]], default "random"
  • 'random' (default): No specific ordering will be applied after sampling. - 'True' : Index columns will determine the sample's order. - 'False': The sample will retain the original object's order.

shift

shift(periods: int = 1) -> bigframes.series.Series

Shift index by desired number of periods.

Shifts the index without realigning the data.

Returns
Type Description
NDFrame Copy of input object, shifted.

skew

skew()

Return unbiased skew over requested axis.

Normalized by N-1.

Returns
Type Description
scalar Scalar.

sort_index

sort_index(
    *, axis=0, ascending=True, na_position="last"
) -> bigframes.series.Series

Sort Series by index labels.

Returns a new Series sorted by label if inplace argument is False, otherwise updates the original series and returns None.

Parameters
Name Description
axis {0 or 'index'}

Unused. Parameter needed for compatibility with DataFrame.

ascending bool or list-like of bools, default True

Sort ascending vs. descending. When the index is a MultiIndex the sort direction can be controlled for each level individually.

na_position {'first', 'last'}, default 'last'

If 'first' puts NaNs at the beginning, 'last' puts NaNs at the end. Not implemented for MultiIndex.

Returns
Type Description
bigframes.series.Series The original Series sorted by the labels or None if inplace=True.

sort_values

sort_values(
    *, axis=0, ascending=True, kind: str = "quicksort", na_position="last"
) -> bigframes.series.Series

Sort by the values.

Sort a Series in ascending or descending order by some criterion.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([np.nan, 1, 3, 10, 5])
>>> s
0    <NA>
1     1.0
2     3.0
3    10.0
4     5.0
dtype: Float64

Sort values ascending order (default behaviour):

>>> s.sort_values(ascending=True)
1     1.0
2     3.0
4     5.0
3    10.0
0    <NA>
dtype: Float64

Sort values descending order:

>>> s.sort_values(ascending=False)
3    10.0
4     5.0
2     3.0
1     1.0
0    <NA>
dtype: Float64

Sort values putting NAs first:

>>> s.sort_values(na_position='first')
0    <NA>
1     1.0
2     3.0
4     5.0
3    10.0
dtype: Float64

Sort a series of strings:

>>> s = bpd.Series(['z', 'b', 'd', 'a', 'c'])
>>> s
0    z
1    b
2    d
3    a
4    c
dtype: string

>>> s.sort_values()
3    a
1    b
4    c
2    d
0    z
dtype: string
Parameters
Name Description
axis 0 or 'index'

Unused. Parameter needed for compatibility with DataFrame.

ascending bool or list of bools, default True

If True, sort values in ascending order, otherwise descending.

kind str, default to 'quicksort'

Choice of sorting algorithm. Accepts 'quicksort’, ‘mergesort’, ‘heapsort’, ‘stable’. Ignored except when determining whether to sort stably. 'mergesort' or 'stable' will result in stable reorder

na_position {'first' or 'last'}, default 'last'

Argument 'first' puts NaNs at the beginning, 'last' puts NaNs at the end.

Returns
Type Description
bigframes.series.Series Series ordered by values or None if inplace=True.

std

std() -> float

Return sample standard deviation over requested axis.

Normalized by N-1 by default.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> df = bpd.DataFrame({'person_id': [0, 1, 2, 3],
...                     'age': [21, 25, 62, 43],
...                     'height': [1.61, 1.87, 1.49, 2.01]}
...                   ).set_index('person_id')
>>> df
           age  height
person_id
0           21    1.61
1           25    1.87
2           62    1.49
3           43    2.01
<BLANKLINE>
[4 rows x 2 columns]

>>> df.std()
age       18.786076
height     0.237417
dtype: Float64

sub

sub(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator sub).

Equivalent to series - other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

subtract

subtract(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return subtraction of Series and other, element-wise (binary operator sub).

Equivalent to series - other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

sum

sum() -> float

Return the sum of the values over the requested axis.

This is equivalent to the method numpy.sum.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

Calculating the sum of a Series:

>>> s = bpd.Series([1, 3])
>>> s
0    1
1    3
dtype: Int64
>>> s.sum()
np.int64(4)

Calculating the sum of a Series containing NA values:

>>> s = bpd.Series([1, 3, bpd.NA])
>>> s
0       1
1       3
2    <NA>
dtype: Int64
>>> s.sum()
np.int64(4)
Returns
Type Description
scalar Scalar.

swaplevel

swaplevel(i: int = -2, j: int = -1)

Swap levels i and j in a MultiIndex.

Default is to swap the two innermost levels of the index.

Parameters
Name Description
i int or str

Levels of the indices to be swapped. Can pass level name as string.

j int or str

Levels of the indices to be swapped. Can pass level name as string.

Returns
Type Description
Series Series with levels swapped in MultiIndex

tail

tail(n: int = 5) -> bigframes.series.Series

Return the last n rows.

This function returns last n rows from the object based on position. It is useful for quickly verifying data, for example, after sorting or appending rows.

For negative values of n, this function returns all rows except the first |n| rows, equivalent to df[|n|:].

If n is larger than the number of rows, this function returns all rows.

Parameter
Name Description
n int, default 5

Number of rows to select.

to_csv

to_csv(
    path_or_buf=None, sep=",", *, header: bool = True, index: bool = True
) -> typing.Optional[str]

Write object to a comma-separated values (csv) file on Cloud Storage.

Parameters
Name Description
path_or_buf str, path object, file-like object, or None, default None

String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string. If a non-binary file object is passed, it should be opened with newline='', disabling universal newlines. If a binary file object is passed, mode might need to contain a 'b'. Alternatively, a destination URI of Cloud Storage files(s) to store the extracted dataframe in format of gs://<bucket_name>/<object_name_or_glob>. If the data size is more than 1GB, you must use a wildcard to export the data into multiple files and the size of the files varies. None, file-like objects or local file paths not yet supported.

index bool, default True

If True, write row names (index).

Returns
Type Description
None or str If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None.

to_dict

to_dict(into: type[dict] = <class 'dict'>) -> typing.Mapping

Convert Series to {label -> value} dict or dict-like object.

Parameter
Name Description
into class, default dict

The collections.abc.Mapping subclass to use as the return object. Can be the actual class or an empty instance of the mapping type you want. If you want a collections.defaultdict, you must pass it initialized.

Returns
Type Description
collections.abc.Mapping Key-value representation of Series.

to_excel

to_excel(excel_writer, sheet_name="Sheet1", **kwargs) -> None

Write Series to an Excel sheet.

To write a single Series to an Excel .xlsx file it is only necessary to specify a target file name. To write to multiple sheets it is necessary to create an ExcelWriter object with a target file name, and specify a sheet in the file to write to.

Multiple sheets may be written to by specifying unique sheet_name. With all data written to the file it is necessary to save the changes. Note that creating an ExcelWriter object with a file name that already exists will result in the contents of the existing file being erased.

Parameters
Name Description
excel_writer path-like, file-like, or ExcelWriter object

File path or existing ExcelWriter.

sheet_name str, default 'Sheet1'

Name of sheet to contain Series.

to_frame

to_frame(name: typing.Hashable = None) -> bigframes.dataframe.DataFrame

Convert Series to DataFrame.

The column in the new dataframe will be named name (the keyword parameter) if the name parameter is provided and not None.

Returns
Type Description
bigframes.dataframe.DataFrame DataFrame representation of Series.

to_json

to_json(
    path_or_buf=None,
    orient: typing.Optional[
        typing.Literal["split", "records", "index", "columns", "values", "table"]
    ] = None,
    *,
    lines: bool = False,
    index: bool = True
) -> typing.Optional[str]

Convert the object to a JSON string, written to Cloud Storage.

Note NaN's and None will be converted to null and datetime objects will be converted to UNIX timestamps.

Parameters
Name Description
path_or_buf str, path object, file-like object, or None, default None

String, path object (implementing os.PathLike[str]), or file-like object implementing a write() function. If None, the result is returned as a string. Can be a destination URI of Cloud Storage files(s) to store the extracted dataframe in format of gs://<bucket_name>/<object_name_or_glob>. Must contain a wildcard * character. If the data size is more than 1GB, you must use a wildcard to export the data into multiple files and the size of the files varies.

orient {split, records, index, columns, values, table}, default 'columns

Indication of expected JSON string format. * Series: - default is 'index' - allowed values are: {{'split', 'records', 'index', 'table'}}. * DataFrame: - default is 'columns' - allowed values are: {{'split', 'records', 'index', 'columns', 'values', 'table'}}. * The format of the JSON string: - 'split' : dict like {{'index' -> [index], 'columns' -> [columns], 'data' -> [values]}} - 'records' : list like [{{column -> value}}, ... , {{column -> value}}] - 'index' : dict like {{index -> {{column -> value}}}} - 'columns' : dict like {{column -> {{index -> value}}}} - 'values' : just the values array - 'table' : dict like {{'schema': {{schema}}, 'data': {{data}}}} Describing the data, where data component is like orient='records'.

index bool, default True

If True, write row names (index).

lines bool, default False

If 'orient' is 'records' write out line-delimited json format. Will throw ValueError if incorrect 'orient' since others are not list-like.

Returns
Type Description
None or str If path_or_buf is None, returns the resulting json format as a string. Otherwise returns None.

to_latex

to_latex(
    buf=None, columns=None, header=True, index=True, **kwargs
) -> typing.Optional[str]

Render object to a LaTeX tabular, longtable, or nested table.

Parameters
Name Description
buf str, Path or StringIO-like, optional, default None

Buffer to write to. If None, the output is returned as a string.

columns list of label, optional

The subset of columns to write. Writes all columns by default.

header bool or list of str, default True

Write out the column names. If a list of strings is given, it is assumed to be aliases for the column names.

index bool, default True

Write row names (index).

Returns
Type Description
str or None If buf is None, returns the result as a string. Otherwise returns None.

to_list

to_list() -> list

Return a list of the values.

These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period).

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 3])
>>> s
0    1
1    2
2    3
dtype: Int64

>>> s.to_list()
[1, 2, 3]
Returns
Type Description
list list of the values

to_markdown

to_markdown(
    buf: typing.Optional[typing.IO[str]] = None,
    mode: str = "wt",
    index: bool = True,
    **kwargs
) -> typing.Optional[str]

Print {klass} in Markdown-friendly format.

Parameters
Name Description
buf str, Path or StringIO-like, optional, default None

Buffer to write to. If None, the output is returned as a string.

mode str, optional

Mode in which file is opened, "wt" by default.

index bool, optional, default True

Add index (row) labels.

Returns
Type Description
str {klass} in Markdown-friendly format.

to_numpy

to_numpy(dtype=None, copy=False, na_value=None, **kwargs) -> numpy.ndarray

A NumPy ndarray representing the values in this Series or Index.

Parameters
Name Description
dtype str or numpy.dtype, optional

The dtype to pass to numpy.asarray.

copy bool, default False

Whether to ensure that the returned value is not a view on another array. Note that copy=False does not ensure that to_numpy() is no-copy. Rather, copy=True ensure that a copy is made, even if not strictly necessary.

na_value Any, optional

The value to use for missing values. The default value depends on dtype and the type of the array.

Returns
Type Description
numpy.ndarray A NumPy ndarray representing the values in this Series or Index.

to_pandas

to_pandas(
    max_download_size: typing.Optional[int] = None,
    sampling_method: typing.Optional[str] = None,
    random_state: typing.Optional[int] = None,
    *,
    ordered: bool = True
) -> pandas.core.series.Series

Writes Series to pandas Series.

Parameters
Name Description
max_download_size int, default None

Download size threshold in MB. If max_download_size is exceeded when downloading data (e.g., to_pandas()), the data will be downsampled if bigframes.options.sampling.enable_downsampling is True, otherwise, an error will be raised. If set to a value other than None, this will supersede the global config.

sampling_method str, default None

Downsampling algorithms to be chosen from, the choices are: "head": This algorithm returns a portion of the data from the beginning. It is fast and requires minimal computations to perform the downsampling; "uniform": This algorithm returns uniform random samples of the data. If set to a value other than None, this will supersede the global config.

random_state int, default None

The seed for the uniform downsampling algorithm. If provided, the uniform method may take longer to execute and require more computation. If set to a value other than None, this will supersede the global config.

ordered bool, default True

Determines whether the resulting pandas series will be ordered. In some cases, unordered may result in a faster-executing query.

Returns
Type Description
pandas.Series A pandas Series with all rows of this Series if the data_sampling_threshold_mb is not exceeded; otherwise, a pandas Series with downsampled rows of the DataFrame.

to_pickle

to_pickle(path, **kwargs) -> None

Pickle (serialize) object to file.

Parameter
Name Description
path str, path object, or file-like object

String, path object (implementing os.PathLike[str]), or file-like object implementing a binary write() function. File path where the pickled object will be stored.

to_string

to_string(
    buf=None,
    na_rep="NaN",
    float_format=None,
    header=True,
    index=True,
    length=False,
    dtype=False,
    name=False,
    max_rows=None,
    min_rows=None,
) -> typing.Optional[str]

Render a string representation of the Series.

Parameters
Name Description
buf StringIO-like, optional

Buffer to write to.

na_rep str, optional

String representation of NaN to use, default 'NaN'.

float_format one-parameter function, optional

Formatter function to apply to columns' elements if they are floats, default None.

header bool, default True

Add the Series header (index name).

index bool, optional

Add index (row) labels, default True.

length bool, default False

Add the Series length.

dtype bool, default False

Add the Series dtype.

name bool, default False

Add the Series name if not None.

max_rows int, optional

Maximum number of rows to show before truncating. If None, show all.

min_rows int, optional

The number of rows to display in a truncated repr (when number of rows is above max_rows).

Returns
Type Description
str or None String representation of Series if buf=None, otherwise None.

to_xarray

to_xarray()

Return an xarray object from the pandas object.

Returns
Type Description
xarray.DataArray or xarray.Dataset Data in the pandas structure converted to Dataset if the object is a DataFrame, or a DataArray if the object is a Series.

tolist

tolist() -> list

Return a list of the values.

These are each a scalar type, which is a Python scalar (for str, int, float) or a pandas scalar (for Timestamp/Timedelta/Interval/Period).

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 3])
>>> s
0    1
1    2
2    3
dtype: Int64

>>> s.to_list()
[1, 2, 3]
Returns
Type Description
list list of the values

transpose

transpose() -> bigframes.series.Series

Return the transpose, which is by definition self.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series(['Ant', 'Bear', 'Cow'])
>>> s
0     Ant
1    Bear
2     Cow
dtype: string

>>> s.transpose()
0     Ant
1    Bear
2     Cow
dtype: string
Returns
Type Description
Series Series.

truediv

truediv(other: float | int | bigframes.series.Series) -> bigframes.series.Series

Return floating division of Series and other, element-wise (binary operator truediv).

Equivalent to series / other, but with support to substitute a fill_value for missing data in either one of the inputs.

Returns
Type Description
bigframes.series.Series The result of the operation.

unique

unique() -> bigframes.series.Series

Return unique values of Series object.

Uniques are returned in order of appearance. Hash table-based unique, therefore does NOT sort.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([2, 1, 3, 3], name='A')
>>> s
0    2
1    1
2    3
3    3
Name: A, dtype: Int64
>>> s.unique()
0    2
1    1
2    3
Name: A, dtype: Int64
Returns
Type Description
Series The unique values returned as a Series.

unstack

unstack(
    level: typing.Union[str, int, typing.Sequence[typing.Union[str, int]]] = -1
)

Unstack, also known as pivot, Series with MultiIndex to produce DataFrame.

Parameter
Name Description
level int, str, or list of these, default last level

Level(s) to unstack, can pass level name.

Returns
Type Description
DataFrame Unstacked Series.

update

update(
    other: typing.Union[bigframes.series.Series, typing.Sequence, typing.Mapping]
) -> None

Modify Series in place using values from passed Series.

Uses non-NA values from passed Series to make updates. Aligns on index.

Examples:

>>> import bigframes.pandas as bpd
>>> import pandas as pd
>>> import numpy as np
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([1, 2, 3])
>>> s.update(bpd.Series([4, 5, 6]))
>>> s
0    4
1    5
2    6
dtype: Int64

>>> s = bpd.Series(['a', 'b', 'c'])
>>> s.update(bpd.Series(['d', 'e'], index=[0, 2]))
>>> s
0    d
1    b
2    e
dtype: string

>>> s = bpd.Series([1, 2, 3])
>>> s.update(bpd.Series([4, 5, 6, 7, 8]))
>>> s
0    4
1    5
2    6
dtype: Int64

If `other` contains NaNs the corresponding values are not updated
in the original Series.

>>> s = bpd.Series([1, 2, 3])
>>> s.update(bpd.Series([4, np.nan, 6], dtype=pd.Int64Dtype()))
>>> s
0    4
1    2
2    6
dtype: Int64

`other` can also be a non-Series object type
that is coercible into a Series

>>> s = bpd.Series([1, 2, 3])
>>> s.update([4, np.nan, 6])
>>> s
0    4.0
1    2.0
2    6.0
dtype: Float64

>>> s = bpd.Series([1, 2, 3])
>>> s.update({1: 9})
>>> s
0    1
1    9
2    3
dtype: Int64

value_counts

value_counts(
    normalize: bool = False,
    sort: bool = True,
    ascending: bool = False,
    *,
    dropna: bool = True
)

Return a Series containing counts of unique values.

The resulting object will be in descending order so that the first element is the most frequently-occurring element. Excludes NA values by default.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([3, 1, 2, 3, 4, bpd.NA], dtype="Int64")

>>> s
0       3
1       1
2       2
3       3
4       4
5    <NA>
dtype: Int64

value_counts sorts the result by counts in a descending order by default:

>>> s.value_counts()
3      2
1      1
2      1
4      1
Name: count, dtype: Int64

You can normalize the counts to return relative frequencies by setting normalize=True:

>>> s.value_counts(normalize=True)
3    0.4
1    0.2
2    0.2
4    0.2
Name: proportion, dtype: Float64

You can get the values in the ascending order of the counts by setting ascending=True:

>>> s.value_counts(ascending=True)
1    1
2    1
4    1
3    2
Name: count, dtype: Int64

You can include the counts of the NA values by setting dropna=False:

>>> s.value_counts(dropna=False)
3       2
1       1
2       1
4       1
<NA>    1
Name: count, dtype: Int64
Parameters
Name Description
normalize bool, default False

If True then the object returned will contain the relative frequencies of the unique values.

sort bool, default True

Sort by frequencies.

ascending bool, default False

Sort in ascending order.

dropna bool, default True

Don't include counts of NaN.

Returns
Type Description
Series Series containing counts of unique values.

var

var() -> float

Return unbiased variance over requested axis.

Normalized by N-1 by default.

Returns
Type Description
scalar or Series (if level specified) Variance.

where

where(cond, other=None)

Replace values where the condition is False.

Examples:

>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None

>>> s = bpd.Series([10, 11, 12, 13, 14])
>>> s
0    10
1    11
2    12
3    13
4    14
dtype: Int64

You can filter the values in the Series based on a condition. The values matching the condition would be kept, and not matching would be replaced. The default replacement value is NA.

>>> s.where(s % 2 == 0)
0      10
1    <NA>
2      12
3    <NA>
4      14
dtype: Int64

You can specify a custom replacement value for non-matching values.

>>> s.where(s % 2 == 0, -1)
0    10
1    -1
2    12
3    -1
4    14
dtype: Int64
>>> s.where(s % 2 == 0, 100*s)
0      10
1    1100
2      12
3    1300
4      14
dtype: Int64
Parameters
Name Description
cond bool Series/DataFrame, array-like, or callable

Where cond is True, keep the original value. Where False, replace with corresponding value from other. If cond is callable, it is computed on the Series/DataFrame and returns boolean Series/DataFrame or array. The callable must not change input Series/DataFrame (though pandas doesn’t check it).

other scalar, Series/DataFrame, or callable

Entries where cond is False are replaced with corresponding value from other. If other is callable, it is computed on the Series/DataFrame and returns scalar or Series/DataFrame. The callable must not change input Series/DataFrame (though pandas doesn’t check it). If not specified, entries will be filled with the corresponding NULL value (np.nan for numpy dtypes, pd.NA for extension dtypes).

Returns
Type Description
bigframes.series.Series Series after the replacement.