- 1.29.0 (latest)
- 1.28.0
- 1.27.0
- 1.26.0
- 1.25.0
- 1.24.0
- 1.22.0
- 1.21.0
- 1.20.0
- 1.19.0
- 1.18.0
- 1.17.0
- 1.16.0
- 1.15.0
- 1.14.0
- 1.13.0
- 1.12.0
- 1.11.1
- 1.10.0
- 1.9.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.21.0
- 0.20.1
- 0.19.2
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.1
- 0.13.0
- 0.12.0
- 0.11.0
- 0.10.0
- 0.9.0
- 0.8.0
- 0.7.0
- 0.6.0
- 0.5.0
- 0.4.0
- 0.3.0
- 0.2.0
Session(
context: typing.Optional[bigframes._config.bigquery_options.BigQueryOptions] = None,
clients_provider: typing.Optional[bigframes.session.clients.ClientsProvider] = None,
)
Establishes a BigQuery connection to capture a group of job activities related to DataFrames.
Parameters |
|
---|---|
Name | Description |
context |
bigframes._config.bigquery_options.BigQueryOptions
Configuration adjusting how to connect to BigQuery and related APIs. Note that some options are ignored if |
clients_provider |
bigframes.session.clients.ClientsProvider
An object providing client library objects. |
Properties
bqclient
API documentation for bqclient
property.
bqconnectionclient
API documentation for bqconnectionclient
property.
bqconnectionmanager
API documentation for bqconnectionmanager
property.
bqstoragereadclient
API documentation for bqstoragereadclient
property.
bytes_processed_sum
The sum of all bytes processed by bigquery jobs using this session.
cloudfunctionsclient
API documentation for cloudfunctionsclient
property.
objects
API documentation for objects
property.
resourcemanagerclient
API documentation for resourcemanagerclient
property.
session_id
API documentation for session_id
property.
slot_millis_sum
The sum of all slot time used by bigquery jobs in this session.
Methods
close
close()
Delete resources that were created with this session's session_id. This includes BigQuery tables, remote functions and cloud functions serving the remote functions.
read_csv
read_csv(
filepath_or_buffer: str | IO["bytes"],
*,
sep: Optional[str] = ",",
header: Optional[int] = 0,
names: Optional[
Union[MutableSequence[Any], np.ndarray[Any, Any], Tuple[Any, ...], range]
] = None,
index_col: Optional[
Union[
int,
str,
Sequence[Union[str, int]],
bigframes.enums.DefaultIndexKind,
Literal[False],
]
] = None,
usecols: Optional[
Union[
MutableSequence[str],
Tuple[str, ...],
Sequence[int],
pandas.Series,
pandas.Index,
np.ndarray[Any, Any],
Callable[[Any], bool],
]
] = None,
dtype: Optional[Dict] = None,
engine: Optional[
Literal["c", "python", "pyarrow", "python-fwf", "bigquery"]
] = None,
encoding: Optional[str] = None,
**kwargs
) -> dataframe.DataFrame
Loads data from a comma-separated values (csv) file into a DataFrame.
The CSV file data will be persisted as a temporary BigQuery table, which can be automatically recycled after the Session is closed.
Examples:>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> gcs_path = "gs://cloud-samples-data/bigquery/us-states/us-states.csv"
>>> df = bpd.read_csv(filepath_or_buffer=gcs_path)
>>> df.head(2)
name post_abbr
0 Alabama AL
1 Alaska AK
<BLANKLINE>
[2 rows x 2 columns]
Parameters | |
---|---|
Name | Description |
filepath_or_buffer |
str
A local or Google Cloud Storage ( |
sep |
Optional[str], default ","
the separator for fields in a CSV file. For the BigQuery engine, the separator can be any ISO-8859-1 single-byte character. To use a character in the range 128-255, you must encode the character as UTF-8. Both engines support |
header |
Optional[int], default 0
row number to use as the column names. - |
names |
default None
a list of column names to use. If the file contains a header row and you want to pass this parameter, then |
index_col |
default None
column(s) to use as the row labels of the DataFrame, either given as string name or column index. |
usecols |
default None
List of column names to use): The BigQuery engine only supports having a list of string column names. Column indices and callable functions are only supported with the default engine. Using the default engine, the column names in |
dtype |
data type for data or columns
Data type for data or columns. Only to be used with default engine. |
engine |
Optional[Dict], default None
Type of engine to use. If |
encoding |
Optional[str], default to None
encoding the character encoding of the data. The default encoding is |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame |
A BigQuery DataFrames. |
read_gbq
read_gbq(
query_or_table: str,
*,
index_col: Iterable[str] | str | bigframes.enums.DefaultIndexKind = (),
columns: Iterable[str] = (),
configuration: Optional[Dict] = None,
max_results: Optional[int] = None,
filters: third_party_pandas_gbq.FiltersType = (),
use_cache: Optional[bool] = None,
col_order: Iterable[str] = ()
) -> dataframe.DataFrame
Loads a DataFrame from BigQuery.
BigQuery tables are an unordered, unindexed data source. To add support
pandas-compatibility, the following indexing options are supported via
the index_col
parameter:
(Empty iterable, default) A default index. Behavior may change. Explicitly set
index_col
if your application makes use of specific index values.If a table has primary key(s), those are used as the index, otherwise a sequential index is generated.
- (
<xref uid="bigframes.enums.DefaultIndexKind.SEQUENTIAL_INT64">bigframes.enums.DefaultIndexKind.SEQUENTIAL_INT64</xref>
) Add an arbitrary sequential index and ordering. Warning This uses an analytic windowed operation that prevents filtering push down. Avoid using on large clustered or partitioned tables. - (Recommended) Set the
index_col
argument to one or more columns. Unique values for the row labels are recommended. Duplicate labels are possible, but note that joins on a non-unique index can duplicate rows via pandas-like outer join behavior.
GENERATE_UUID() AS
rowindex
in your SQL and set index_col='rowindex'
for the
best performance.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
If the input is a table ID:
>>> df = bpd.read_gbq("bigquery-public-data.ml_datasets.penguins")
Read table path with wildcard suffix and filters:
df = bpd.read_gbq_table("bigquery-public-data.noaa_gsod.gsod19*", filters=[("_table_suffix", ">=", "30"), ("_table_suffix", "<=", "39")])
Preserve ordering in a query input.
>>> df = bpd.read_gbq('''
... SELECT
... -- Instead of an ORDER BY clause on the query, use
... -- ROW_NUMBER() to create an ordered DataFrame.
... ROW_NUMBER() OVER (ORDER BY AVG(pitchSpeed) DESC)
... AS rowindex,
...
... pitcherFirstName,
... pitcherLastName,
... AVG(pitchSpeed) AS averagePitchSpeed
... FROM `bigquery-public-data.baseball.games_wide`
... WHERE year = 2016
... GROUP BY pitcherFirstName, pitcherLastName
... ''', index_col="rowindex")
>>> df.head(2)
pitcherFirstName pitcherLastName averagePitchSpeed
rowindex
1 Albertin Chapman 96.514113
2 Zachary Britton 94.591039
<BLANKLINE>
[2 rows x 3 columns]
Reading data with columns
and filters
parameters:
>>> columns = ['pitcherFirstName', 'pitcherLastName', 'year', 'pitchSpeed']
>>> filters = [('year', '==', 2016), ('pitcherFirstName', 'in', ['John', 'Doe']), ('pitcherLastName', 'in', ['Gant']), ('pitchSpeed', '>', 94)]
>>> df = bpd.read_gbq(
... "bigquery-public-data.baseball.games_wide",
... columns=columns,
... filters=filters,
... )
>>> df.head(1)
pitcherFirstName pitcherLastName year pitchSpeed
0 John Gant 2016 95
<BLANKLINE>
[1 rows x 4 columns]
Parameters | |
---|---|
Name | Description |
query_or_table |
str
A SQL string to be executed or a BigQuery table to be read. The table must be specified in the format of |
index_col |
Iterable[str], str, bigframes.enums.DefaultIndexKind
Name of result column(s) to use for index in results DataFrame. If an empty iterable, such as |
columns |
Iterable[str]
List of BigQuery column names in the desired order for results DataFrame. |
configuration |
dict, optional
Query config parameters for job processing. For example: configuration = {'query': {'useQueryCache': False}}. For more information see |
max_results |
Optional[int], default None
If set, limit the maximum number of rows to fetch from the query results. |
filters |
Union[Iterable[FilterType], Iterable[Iterable[FilterType]]], default ()
To filter out data. Filter syntax: [[(column, op, val), …],…] where op is [==, >, >=, <, <=, !=, in, not in, LIKE]. The innermost tuples are transposed into a set of filters applied through an AND operation. The outer Iterable combines these sets of filters through an OR operation. A single Iterable of tuples can also be used, meaning that no OR operation between set of filters is to be conducted. If using wildcard table suffix in query_or_table, can specify '_table_suffix' pseudo column to filter the tables to be read into the DataFrame. |
use_cache |
Optional[bool], default None
Caches query results if set to |
col_order |
Iterable[str]
Alias for columns, retained for backwards compatibility. |
Exceptions | |
---|---|
Type | Description |
bigframes.exceptions.DefaultIndexWarning |
Using the default index is discouraged, such as with clustered or partitioned tables without primary keys. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame |
A DataFrame representing results of the query or table. |
read_gbq_function
read_gbq_function(function_name: str, is_row_processor: bool = False)
Loads a BigQuery function from BigQuery.
Then it can be applied to a DataFrame or Series.
BigQuery Utils provides many public functions under thebqutil
project on Google Cloud Platform project
(See: https://github.com/GoogleCloudPlatform/bigquery-utils/tree/master/udfs#using-the-udfs).
You can checkout Community UDFs to use community-contributed functions.
(See: https://github.com/GoogleCloudPlatform/bigquery-utils/tree/master/udfs/community#community-udfs).
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
Use the cw_lower_case_ascii_only function from Community UDFs.
>>> func = bpd.read_gbq_function("bqutil.fn.cw_lower_case_ascii_only")
You can run it on scalar input. Usually you would do so to verify that it works as expected before applying to all values in a Series.
>>> func('AURÉLIE')
'aurÉlie'
You can apply it to a BigQuery DataFrames Series.
>>> df = bpd.DataFrame({'id': [1, 2, 3], 'name': ['AURÉLIE', 'CÉLESTINE', 'DAPHNÉ']})
>>> df
id name
0 1 AURÉLIE
1 2 CÉLESTINE
2 3 DAPHNÉ
<BLANKLINE>
[3 rows x 2 columns]
>>> df1 = df.assign(new_name=df['name'].apply(func))
>>> df1
id name new_name
0 1 AURÉLIE aurÉlie
1 2 CÉLESTINE cÉlestine
2 3 DAPHNÉ daphnÉ
<BLANKLINE>
[3 rows x 3 columns]
You can even use a function with multiple inputs. For example, cw_regexp_replace_5 from Community UDFs.
>>> func = bpd.read_gbq_function("bqutil.fn.cw_regexp_replace_5")
>>> func('TestStr123456', 'Str', 'Cad$', 1, 1)
'TestCad$123456'
>>> df = bpd.DataFrame({
... "haystack" : ["TestStr123456", "TestStr123456Str", "TestStr123456Str"],
... "regexp" : ["Str", "Str", "Str"],
... "replacement" : ["Cad$", "Cad$", "Cad$"],
... "offset" : [1, 1, 1],
... "occurrence" : [1, 2, 1]
... })
>>> df
haystack regexp replacement offset occurrence
0 TestStr123456 Str Cad$ 1 1
1 TestStr123456Str Str Cad$ 1 2
2 TestStr123456Str Str Cad$ 1 1
<BLANKLINE>
[3 rows x 5 columns]
>>> df.apply(func, axis=1)
0 TestCad$123456
1 TestStr123456Cad$
2 TestCad$123456Str
dtype: string
Parameters | |
---|---|
Name | Description |
function_name |
str
The function's name in BigQuery in the format |
is_row_processor |
bool, default False
Whether the function is a row processor. This is set to True for a function which receives an entire row of a DataFrame as a pandas Series. |
Returns | |
---|---|
Type | Description |
callable |
A function object pointing to the BigQuery function read from BigQuery. The object is similar to the one created by the remote_function decorator, including the bigframes_remote_function property, but not including the bigframes_cloud_function property. |
read_gbq_model
read_gbq_model(model_name: str)
Loads a BigQuery ML model from BigQuery.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
Read an existing BigQuery ML model.
>>> model_name = "bigframes-dev.bqml_tutorial.penguins_model"
>>> model = bpd.read_gbq_model(model_name)
Parameter | |
---|---|
Name | Description |
model_name |
str
the model's name in BigQuery in the format |
read_gbq_query
read_gbq_query(
query: str,
*,
index_col: Iterable[str] | str | bigframes.enums.DefaultIndexKind = (),
columns: Iterable[str] = (),
configuration: Optional[Dict] = None,
max_results: Optional[int] = None,
use_cache: Optional[bool] = None,
col_order: Iterable[str] = (),
filters: third_party_pandas_gbq.FiltersType = ()
) -> dataframe.DataFrame
Turn a SQL query into a DataFrame.
Note: Because the results are written to a temporary table, ordering by
ORDER BY
is not preserved. A unique index_col
is recommended. Use
row_number() over ()
if there is no natural unique index or you
want to preserve ordering.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
Simple query input:
>>> df = bpd.read_gbq_query('''
... SELECT
... pitcherFirstName,
... pitcherLastName,
... pitchSpeed,
... FROM `bigquery-public-data.baseball.games_wide`
... ''')
Preserve ordering in a query input.
>>> df = bpd.read_gbq_query('''
... SELECT
... -- Instead of an ORDER BY clause on the query, use
... -- ROW_NUMBER() to create an ordered DataFrame.
... ROW_NUMBER() OVER (ORDER BY AVG(pitchSpeed) DESC)
... AS rowindex,
...
... pitcherFirstName,
... pitcherLastName,
... AVG(pitchSpeed) AS averagePitchSpeed
... FROM `bigquery-public-data.baseball.games_wide`
... WHERE year = 2016
... GROUP BY pitcherFirstName, pitcherLastName
... ''', index_col="rowindex")
>>> df.head(2)
pitcherFirstName pitcherLastName averagePitchSpeed
rowindex
1 Albertin Chapman 96.514113
2 Zachary Britton 94.591039
<BLANKLINE>
[2 rows x 3 columns]
See also: Session.read_gbq
.
read_gbq_table
read_gbq_table(
query: str,
*,
index_col: Iterable[str] | str | bigframes.enums.DefaultIndexKind = (),
columns: Iterable[str] = (),
max_results: Optional[int] = None,
filters: third_party_pandas_gbq.FiltersType = (),
use_cache: bool = True,
col_order: Iterable[str] = ()
) -> dataframe.DataFrame
Turn a BigQuery table into a DataFrame.
Examples:
>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
Read a whole table, with arbitrary ordering or ordering corresponding to the primary key(s).
>>> df = bpd.read_gbq_table("bigquery-public-data.ml_datasets.penguins")
See also: Session.read_gbq
.
read_gbq_table_streaming
read_gbq_table_streaming(table: str) -> streaming_dataframe.StreamingDataFrame
Turn a BigQuery table into a StreamingDataFrame.
import bigframes.streaming as bst import bigframes.pandas as bpd bpd.options.display.progress_bar = None
sdf = bst.read_gbq_table("bigquery-public-data.ml_datasets.penguins")
read_json
read_json(
path_or_buf: str | IO["bytes"],
*,
orient: Literal[
"split", "records", "index", "columns", "values", "table"
] = "columns",
dtype: Optional[Dict] = None,
encoding: Optional[str] = None,
lines: bool = False,
engine: Literal["ujson", "pyarrow", "bigquery"] = "ujson",
**kwargs
) -> dataframe.DataFrame
Convert a JSON string to DataFrame object.
Examples:>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> gcs_path = "gs://bigframes-dev-testing/sample1.json"
>>> df = bpd.read_json(path_or_buf=gcs_path, lines=True, orient="records")
>>> df.head(2)
id name
0 1 Alice
1 2 Bob
<BLANKLINE>
[2 rows x 2 columns]
Parameters | |
---|---|
Name | Description |
path_or_buf |
a valid JSON str, path object or file-like object
A local or Google Cloud Storage ( |
orient |
str, optional
If |
dtype |
bool or dict, default None
If True, infer dtypes; if a dict of column to dtype, then use those; if False, then don't infer dtypes at all, applies only to the data. For all |
encoding |
str, default is 'utf-8'
The encoding to use to decode py3 bytes. |
lines |
bool, default False
Read the file as a json object per line. If using |
engine |
{{"ujson", "pyarrow", "bigquery"}}, default "ujson"
Type of engine to use. If |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame |
The DataFrame representing JSON contents. |
read_pandas
Loads DataFrame from a pandas DataFrame.
The pandas DataFrame will be persisted as a temporary BigQuery table, which can be automatically recycled after the Session is closed.
Examples:>>> import bigframes.pandas as bpd
>>> import pandas as pd
>>> bpd.options.display.progress_bar = None
>>> d = {'col1': [1, 2], 'col2': [3, 4]}
>>> pandas_df = pd.DataFrame(data=d)
>>> df = bpd.read_pandas(pandas_df)
>>> df
col1 col2
0 1 3
1 2 4
<BLANKLINE>
[2 rows x 2 columns]
Parameter | |
---|---|
Name | Description |
pandas_dataframe |
pandas.DataFrame, pandas.Series, or pandas.Index
a pandas DataFrame/Series/Index object to be loaded. |
read_parquet
read_parquet(
path: str | IO["bytes"], *, engine: str = "auto"
) -> dataframe.DataFrame
Load a Parquet object from the file path (local or Cloud Storage), returning a DataFrame.
Examples:>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> gcs_path = "gs://cloud-samples-data/bigquery/us-states/us-states.parquet"
>>> df = bpd.read_parquet(path=gcs_path, engine="bigquery")
Parameters | |
---|---|
Name | Description |
path |
str
Local or Cloud Storage path to Parquet file. |
engine |
str
One of |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame |
A BigQuery DataFrames. |
read_pickle
read_pickle(
filepath_or_buffer: FilePath | ReadPickleBuffer,
compression: CompressionOptions = "infer",
storage_options: StorageOptions = None,
)
Load pickled BigFrames object (or any object) from file.
Examples:>>> import bigframes.pandas as bpd
>>> bpd.options.display.progress_bar = None
>>> gcs_path = "gs://bigframes-dev-testing/test_pickle.pkl"
>>> df = bpd.read_pickle(filepath_or_buffer=gcs_path)
Parameters | |
---|---|
Name | Description |
filepath_or_buffer |
str, path object, or file-like object
String, path object (implementing os.PathLike[str]), or file-like object implementing a binary readlines() function. Also accepts URL. URL is not limited to S3 and GCS. |
compression |
str or dict, default 'infer'
For on-the-fly decompression of on-disk data. If 'infer' and 'filepath_or_buffer' is path-like, then detect compression from the following extensions: '.gz', '.bz2', '.zip', '.xz', '.zst', '.tar', '.tar.gz', '.tar.xz' or '.tar.bz2' (otherwise no compression). If using 'zip' or 'tar', the ZIP file must contain only one data file to be read in. Set to None for no decompression. Can also be a dict with key 'method' set to one of {'zip', 'gzip', 'bz2', 'zstd', 'tar'} and other key-value pairs are forwarded to zipfile.ZipFile, gzip.GzipFile, bz2.BZ2File, zstandard.ZstdDecompressor or tarfile.TarFile, respectively. As an example, the following could be passed for Zstandard decompression using a custom compression dictionary compression={'method': 'zstd', 'dict_data': my_compression_dict}. |
storage_options |
dict, default None
Extra options that make sense for a particular storage connection, e.g. host, port, username, password, etc. For HTTP(S) URLs the key-value pairs are forwarded to urllib.request.Request as header options. For other URLs (e.g. starting with “s3://”, and “gcs://”) the key-value pairs are forwarded to fsspec.open. Please see fsspec and urllib for more details, and for more examples on storage options refer here. |
Returns | |
---|---|
Type | Description |
bigframes.dataframe.DataFrame or bigframes.series.Series |
same type as object stored in file. |
remote_function
remote_function(
input_types: typing.Union[None, type, typing.Sequence[type]] = None,
output_type: typing.Optional[type] = None,
dataset: typing.Optional[str] = None,
bigquery_connection: typing.Optional[str] = None,
reuse: bool = True,
name: typing.Optional[str] = None,
packages: typing.Optional[typing.Sequence[str]] = None,
cloud_function_service_account: typing.Optional[str] = None,
cloud_function_kms_key_name: typing.Optional[str] = None,
cloud_function_docker_repository: typing.Optional[str] = None,
max_batching_rows: typing.Optional[int] = 1000,
cloud_function_timeout: typing.Optional[int] = 600,
cloud_function_max_instances: typing.Optional[int] = None,
cloud_function_vpc_connector: typing.Optional[str] = None,
cloud_function_memory_mib: typing.Optional[int] = 1024,
cloud_function_ingress_settings: typing.Literal[
"all", "internal-only", "internal-and-gclb"
] = "all",
)
Decorator to turn a user defined function into a BigQuery remote function. Check out the code samples at: https://cloud.google.com/bigquery/docs/remote-functions#bigquery-dataframes.
Have the below APIs enabled for your project:
- BigQuery Connection API
- Cloud Functions API
- Cloud Run API
- Cloud Build API
- Artifact Registry API
- Cloud Resource Manager API
This can be done from the cloud console (change
PROJECT_ID
to yours): https://console.cloud.google.com/apis/enableflow?apiid=bigqueryconnection.googleapis.com,cloudfunctions.googleapis.com,run.googleapis.com,cloudbuild.googleapis.com,artifactregistry.googleapis.com,cloudresourcemanager.googleapis.com&project=PROJECT_IDOr from the gcloud CLI:
$ gcloud services enable bigqueryconnection.googleapis.com cloudfunctions.googleapis.com run.googleapis.com cloudbuild.googleapis.com artifactregistry.googleapis.com cloudresourcemanager.googleapis.com
Have following IAM roles enabled for you:
- BigQuery Data Editor (roles/bigquery.dataEditor)
- BigQuery Connection Admin (roles/bigquery.connectionAdmin)
- Cloud Functions Developer (roles/cloudfunctions.developer)
- Service Account User (roles/iam.serviceAccountUser) on the service account
PROJECT_NUMBER-compute@developer.gserviceaccount.com
- Storage Object Viewer (roles/storage.objectViewer)
- Project IAM Admin (roles/resourcemanager.projectIamAdmin) (Only required if the bigquery connection being used is not pre-created and is created dynamically with user credentials.)
Either the user has setIamPolicy privilege on the project, or a BigQuery connection is pre-created with necessary IAM role set:
- To create a connection, follow https://cloud.google.com/bigquery/docs/reference/standard-sql/remote-functions#create_a_connection
To set up IAM, follow https://cloud.google.com/bigquery/docs/reference/standard-sql/remote-functions#grant_permission_on_function
Alternatively, the IAM could also be setup via the gcloud CLI:
$ gcloud projects add-iam-policy-binding PROJECT_ID --member="serviceAccount:CONNECTION_SERVICE_ACCOUNT_ID" --role="roles/run.invoker"
.
Parameters | |
---|---|
Name | Description |
input_types |
type or sequence(type)
For scalar user defined function it should be the input type or sequence of input types. For row processing user defined function, type |
output_type |
type
Data type of the output in the user defined function. |
dataset |
str, Optional
Dataset in which to create a BigQuery remote function. It should be in |
bigquery_connection |
str, Optional
Name of the BigQuery connection. You should either have the connection already created in the |
reuse |
bool, Optional
Reuse the remote function if already exists. |
name |
str, Optional
Explicit name of the persisted BigQuery remote function. Use it with caution, because more than one users working in the same project and dataset could overwrite each other's remote functions if they use the same persistent name. When an explicit name is provided, any session specific clean up ( |
packages |
str[], Optional
Explicit name of the external package dependencies. Each dependency is added to the |
cloud_function_service_account |
str, Optional
Service account to use for the cloud functions. If not provided then the default service account would be used. See https://cloud.google.com/functions/docs/securing/function-identity for more details. Please make sure the service account has the necessary IAM permissions configured as described in https://cloud.google.com/functions/docs/reference/iam/roles#additional-configuration. |
cloud_function_kms_key_name |
str, Optional
Customer managed encryption key to protect cloud functions and related data at rest. This is of the format projects/PROJECT_ID/locations/LOCATION/keyRings/KEYRING/cryptoKeys/KEY. Read https://cloud.google.com/functions/docs/securing/cmek for more details including granting necessary service accounts access to the key. |
cloud_function_docker_repository |
str, Optional
Docker repository created with the same encryption key as |
max_batching_rows |
int, Optional
The maximum number of rows to be batched for processing in the BQ remote function. Default value is 1000. A lower number can be passed to avoid timeouts in case the user code is too complex to process large number of rows fast enough. A higher number can be used to increase throughput in case the user code is fast enough. |
cloud_function_timeout |
int, Optional
The maximum amount of time (in seconds) BigQuery should wait for the cloud function to return a response. See for more details https://cloud.google.com/functions/docs/configuring/timeout. Please note that even though the cloud function (2nd gen) itself allows seeting up to 60 minutes of timeout, BigQuery remote function can wait only up to 20 minutes, see for more details https://cloud.google.com/bigquery/quotas#remote_function_limits. By default BigQuery DataFrames uses a 10 minute timeout. |
cloud_function_max_instances |
int, Optional
The maximumm instance count for the cloud function created. This can be used to control how many cloud function instances can be active at max at any given point of time. Lower setting can help control the spike in the billing. Higher setting can help support processing larger scale data. When not specified, cloud function's default setting applies. For more details see https://cloud.google.com/functions/docs/configuring/max-instances. |
cloud_function_vpc_connector |
str, Optional
The VPC connector you would like to configure for your cloud function. This is useful if your code needs access to data or service(s) that are on a VPC network. See for more details https://cloud.google.com/functions/docs/networking/connecting-vpc. |
cloud_function_memory_mib |
int, Optional
The amounts of memory (in mebibytes) to allocate for the cloud function (2nd gen) created. This also dictates a corresponding amount of allocated CPU for the function. By default a memory of 1024 MiB is set for the cloud functions created to support BigQuery DataFrames remote function. If you want to let the default memory of cloud functions be allocated, pass |
cloud_function_ingress_settings |
str, Optional
Ingress settings controls dictating what traffic can reach the function. By default |
Returns | |
---|---|
Type | Description |
callable |
A remote function object pointing to the cloud assets created in the background to support the remote execution. The cloud assets can be located through the following properties set in the object: bigframes_cloud_function - The google cloud function deployed for the user defined code. bigframes_remote_function - The bigquery remote function capable of calling into bigframes_cloud_function . |