Package Classes (2.15.0)

Summary of entries of Classes for automl.

Classes

AutoMlAsyncClient

AutoML Server API.

The resource names are assigned by the server. The server never reuses names that it has created after the resources with those names are deleted.

An ID of a resource is the last element of the item's resource name. For projects/{project_id}/locations/{location_id}/datasets/{dataset_id}, then the id for the item is {dataset_id}.

Currently the only supported location_id is "us-central1".

On any input that is documented to expect a string parameter in snake_case or dash-case, either of those cases is accepted.

AutoMlClient

AutoML Server API.

The resource names are assigned by the server. The server never reuses names that it has created after the resources with those names are deleted.

An ID of a resource is the last element of the item's resource name. For projects/{project_id}/locations/{location_id}/datasets/{dataset_id}, then the id for the item is {dataset_id}.

Currently the only supported location_id is "us-central1".

On any input that is documented to expect a string parameter in snake_case or dash-case, either of those cases is accepted.

ListDatasetsAsyncPager

A pager for iterating through list_datasets requests.

This class thinly wraps an initial ListDatasetsResponse object, and provides an __aiter__ method to iterate through its datasets field.

If there are more pages, the __aiter__ method will make additional ListDatasets requests and continue to iterate through the datasets field on the corresponding responses.

All the usual ListDatasetsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListDatasetsPager

A pager for iterating through list_datasets requests.

This class thinly wraps an initial ListDatasetsResponse object, and provides an __iter__ method to iterate through its datasets field.

If there are more pages, the __iter__ method will make additional ListDatasets requests and continue to iterate through the datasets field on the corresponding responses.

All the usual ListDatasetsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListModelEvaluationsAsyncPager

A pager for iterating through list_model_evaluations requests.

This class thinly wraps an initial ListModelEvaluationsResponse object, and provides an __aiter__ method to iterate through its model_evaluation field.

If there are more pages, the __aiter__ method will make additional ListModelEvaluations requests and continue to iterate through the model_evaluation field on the corresponding responses.

All the usual ListModelEvaluationsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListModelEvaluationsPager

A pager for iterating through list_model_evaluations requests.

This class thinly wraps an initial ListModelEvaluationsResponse object, and provides an __iter__ method to iterate through its model_evaluation field.

If there are more pages, the __iter__ method will make additional ListModelEvaluations requests and continue to iterate through the model_evaluation field on the corresponding responses.

All the usual ListModelEvaluationsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListModelsAsyncPager

A pager for iterating through list_models requests.

This class thinly wraps an initial ListModelsResponse object, and provides an __aiter__ method to iterate through its model field.

If there are more pages, the __aiter__ method will make additional ListModels requests and continue to iterate through the model field on the corresponding responses.

All the usual ListModelsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListModelsPager

A pager for iterating through list_models requests.

This class thinly wraps an initial ListModelsResponse object, and provides an __iter__ method to iterate through its model field.

If there are more pages, the __iter__ method will make additional ListModels requests and continue to iterate through the model field on the corresponding responses.

All the usual ListModelsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

PredictionServiceAsyncClient

AutoML Prediction API.

On any input that is documented to expect a string parameter in snake_case or dash-case, either of those cases is accepted.

PredictionServiceClient

AutoML Prediction API.

On any input that is documented to expect a string parameter in snake_case or dash-case, either of those cases is accepted.

AnnotationPayload

Contains annotation information that is relevant to AutoML.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

AnnotationSpec

A definition of an annotation spec.

BatchPredictInputConfig

Input configuration for BatchPredict Action.

The format of input depends on the ML problem of the model used for prediction. As input source the gcs_source is expected, unless specified otherwise.

The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:

AutoML Vision:

Classification:

One or more CSV files where each line is a single column:

::

GCS_FILE_PATH

The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the batch predict output.

Sample rows:

::

gs://folder/image1.jpeg
gs://folder/image2.gif
gs://folder/image3.png

Object Detection:

One or more CSV files where each line is a single column:

::

GCS_FILE_PATH

The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the batch predict output.

Sample rows:

::

gs://folder/image1.jpeg
gs://folder/image2.gif
gs://folder/image3.png

AutoML Video Intelligence:

Classification:

One or more CSV files where each line is a single column:

::

GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END

GCS_FILE_PATH is the Google Cloud Storage location of video up to 50GB in size and up to 3h in duration duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.

TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and the end time must be after the start time.

Sample rows:

::

gs://folder/video1.mp4,10,40
gs://folder/video1.mp4,20,60
gs://folder/vid2.mov,0,inf

Object Tracking:

One or more CSV files where each line is a single column:

::

GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END

GCS_FILE_PATH is the Google Cloud Storage location of video up to 50GB in size and up to 3h in duration duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.

TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and the end time must be after the start time.

Sample rows:

::

gs://folder/video1.mp4,10,40
gs://folder/video1.mp4,20,60
gs://folder/vid2.mov,0,inf

AutoML Natural Language:

Classification:

One or more CSV files where each line is a single column:

::

GCS_FILE_PATH

GCS_FILE_PATH is the Google Cloud Storage location of a text file. Supported file extensions: .TXT, .PDF, .TIF, .TIFF

Text files can be no larger than 10MB in size.

Sample rows:

::

gs://folder/text1.txt
gs://folder/text2.pdf
gs://folder/text3.tif

Sentiment Analysis:

One or more CSV files where each line is a single column:

::

GCS_FILE_PATH

GCS_FILE_PATH is the Google Cloud Storage location of a text file. Supported file extensions: .TXT, .PDF, .TIF, .TIFF

Text files can be no larger than 128kB in size.

Sample rows:

::

gs://folder/text1.txt
gs://folder/text2.pdf
gs://folder/text3.tif

Entity Extraction:

One or more JSONL (JSON Lines) files that either provide inline text or documents. You can only use one format, either inline text or documents, for a single call to [AutoMl.BatchPredict].

Each JSONL file contains a per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called "id", a TextSnippet proto (in JSON representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique.

Each document JSONL file contains, per line, a proto that wraps a Document proto with input_config set. Each document cannot exceed 2MB in size.

Supported document extensions: .PDF, .TIF, .TIFF

Each JSONL file must not exceed 100MB in size, and no more than 20 JSONL files may be passed.

Sample inline JSONL file (Shown with artificial line breaks. Actual line breaks are denoted by "\n".):

::

{
   "id": "my_first_id",
   "text_snippet": { "content": "dog car cat"},
   "text_features": [
     {
       "text_segment": {"start_offset": 4, "end_offset": 6},
       "structural_type": PARAGRAPH,
       "bounding_poly": {
         "normalized_vertices": [
           {"x": 0.1, "y": 0.1},
           {"x": 0.1, "y": 0.3},
           {"x": 0.3, "y": 0.3},
           {"x": 0.3, "y": 0.1},
         ]
       },
     }
   ],
 }\n
 {
   "id": "2",
   "text_snippet": {
     "content": "Extended sample content",
     "mime_type": "text/plain"
   }
 }

Sample document JSONL file (Shown with artificial line breaks. Actual line breaks are denoted by "\n".):

::

 {
   "document": {
     "input_config": {
       "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ]
       }
     }
   }
 }\n
 {
   "document": {
     "input_config": {
       "gcs_source": { "input_uris": [ "gs://folder/document2.tif" ]
       }
     }
   }
 }

AutoML Tables:

See Preparing your training data <https://cloud.google.com/automl-tables/docs/predict-batch>__ for more information.

You can use either gcs_source or bigquery_source][BatchPredictInputConfig.bigquery_source].

For gcs_source:

CSV file(s), each by itself 10GB or smaller and total size must be 100GB or smaller, where first file must have a header containing column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns.

The column names must contain the model's [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs] display_name-s (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows, i.e. the CSV lines, will be attempted.

Sample rows from a CSV file:

.. raw:: html

<pre>
"First Name","Last Name","Dob","Addresses"
"John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
"Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
</pre>

For bigquery_source:

The URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller.

The column names must contain the model's [input_feature_column_specs'][google.cloud.automl.v1.TablesModelMetadata.input_feature_column_specs] display_name-s (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows of the table will be attempted.

Input field definitions:

GCS_FILE_PATH : The path to a file on Google Cloud Storage. For example, "gs://folder/video.avi".

TIME_SEGMENT_START : (TIME_OFFSET) Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video).

TIME_SEGMENT_END : (TIME_OFFSET) Expresses an end, exclusive, of a time segment within n example that has a time dimension (e.g. video).

TIME_OFFSET : A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed, and it means the end of the example.

Errors:

If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and prediction does not happen. Regardless of overall success or failure the per-row failures, up to a certain count cap, will be listed in Operation.metadata.partial_failures.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

BatchPredictOperationMetadata

Details of BatchPredict operation.

BatchPredictOutputInfo

Further describes this batch predict's output. Supplements BatchPredictOutputConfig.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

BatchPredictOutputConfig

Output configuration for BatchPredict Action.

As destination the gcs_destination must be set unless specified otherwise for a domain. If gcs_destination is set then in the given directory a new directory is created. Its name will be "prediction--", where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents of it depends on the ML problem the predictions are made for.

  • For Image Classification: In the created directory files image_classification_1.jsonl, image_classification_2.jsonl,...,\ image_classification_N.jsonl will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. A single image will be listed only once with all its annotations, and its annotations will never be split across files. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. If prediction for any image failed (partially or completely), then an additional errors_1.jsonl, errors_2.jsonl,..., errors_N.jsonl files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one `google.rpc.Status https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto__ containing onlycodeandmessage`\ fields.

  • For Image Object Detection: In the created directory files image_object_detection_1.jsonl, image_object_detection_2.jsonl,...,\ image_object_detection_N.jsonl will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have image_object_detection detail populated. A single image will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any image failed (partially or completely), then additional errors_1.jsonl, errors_2.jsonl,..., errors_N.jsonl files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one `google.rpc.Status https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto__ containing onlycodeandmessage`\ fields.

  • For Video Classification: In the created directory a video_classification.csv file, and a .JSON file per each video classification requested in the input (i.e. each line in given CSV(s)), will be created.

    ::

    The format of video_classification.csv is: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_classification.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty.

    Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for the video time segment the file is assigned to in the video_classification.csv. All AnnotationPayload protos will have video_classification field set, and will be sorted by video_classification.type field (note that the returned types are governed by classifaction_types parameter in [PredictService.BatchPredictRequest.params][]).

  • For Video Object Tracking: In the created directory a video_object_tracking.csv file will be created, and multiple files video_object_trackinng_1.json, video_object_trackinng_2.json,..., video_object_trackinng_N.json, where N is the number of requests in the input (i.e. the number of lines in given CSV(s)).

    ::

    The format of video_object_tracking.csv is: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_object_tracking.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty.

    Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for each frame of the video time segment the file is assigned to in video_object_tracking.csv. All AnnotationPayload protos will have video_object_tracking field set.

  • For Text Classification: In the created directory files text_classification_1.jsonl, text_classification_2.jsonl,...,\ text_classification_N.jsonl will be created, where N may be 1, and depends on the total number of inputs and annotations found.

    ::

    Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text file (or document) in the text snippet (or document) proto and a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. A single text file (or document) will be listed only once with all its annotations, and its annotations will never be split across files.

    If prediction for any input file (or document) failed (partially or completely), then additional errors_1.jsonl, errors_2.jsonl,..., errors_N.jsonl files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input file followed by exactly one google.rpc.Status containing only code and message.

  • For Text Sentiment: In the created directory files text_sentiment_1.jsonl, text_sentiment_2.jsonl,...,\ text_sentiment_N.jsonl will be created, where N may be 1, and depends on the total number of inputs and annotations found.

    ::

    Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text file (or document) in the text snippet (or document) proto and a list of zero or more AnnotationPayload protos (called annotations), which have text_sentiment detail populated. A single text file (or document) will be listed only once with all its annotations, and its annotations will never be split across files.

    If prediction for any input file (or document) failed (partially or completely), then additional errors_1.jsonl, errors_2.jsonl,..., errors_N.jsonl files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input file followed by exactly one google.rpc.Status containing only code and message.

  • For Text Extraction: In the created directory files text_extraction_1.jsonl, text_extraction_2.jsonl,...,\ text_extraction_N.jsonl will be created, where N may be 1, and depends on the total number of inputs and annotations found. The contents of these .JSONL file(s) depend on whether the input used inline text, or documents. If input was inline, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request text snippet's "id" (if specified), followed by input text snippet, and a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated. A single text snippet will be listed only once with all its annotations, and its annotations will never be split across files. If input used documents, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request document proto, followed by its OCR-ed representation in the form of a text snippet, finally followed by a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated and refer, via their indices, to the OCR-ed text snippet. A single document (and its text snippet) will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet failed (partially or completely), then additional errors_1.jsonl, errors_2.jsonl,..., errors_N.jsonl files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps either the "id" : "<id_value>" (in case of inline) or the document proto (in case of document) but here followed by exactly one `google.rpc.Status https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto__ containing onlycodeandmessage`.

  • For Tables: Output depends on whether gcs_destination or bigquery_destination is set (either is allowed). Google Cloud Storage case: In the created directory files tables_1.csv, tables_2.csv,..., tables_N.csv will be created, where N may be 1, and depends on the total number of the successfully predicted rows. For all CLASSIFICATION prediction_type-s: Each .csv file will contain a header, listing all columns' display_name-s given on input followed by M target column names in the format of "<target_column_specs display_name>\ score" where M is the number of distinct target values, i.e. number of distinct values in the target column of the table used to train the model. Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, columns having the corresponding prediction scores. For REGRESSION and FORECASTING prediction_type-s: Each .csv file will contain a header, listing all columns' display_name-s given on input followed by the predicted target column with name in the format of "predicted\ <target_column_specs display_name>" Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, column having the predicted target value. If prediction for any rows failed, then an additional errors_1.csv, errors_2.csv,..., errors_N.csv will be created (N depends on total number of failed rows). These files will have analogous format as `tables_.csv, but always with a single target column having*\ ```google.rpc.Status`` <https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto>\ represented as a JSON string, and containing only code and message. BigQuery case: bigquery_destination pointing to a BigQuery project must be set. In the given project a new dataset will be created with name prediction_<model-display-name>_<timestamp-of-prediction-call> where will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset two tables will be created, predictions, and errors. The predictions table's column names will be the input columns' display_name-s followed by the target column with name in the format of "predicted\ <target_column_specs display_name>" The input feature columns will contain the respective values of successfully predicted rows, with the target column having an ARRAY of AnnotationPayloads, represented as STRUCT-s, containing TablesAnnotation. The errors table contains rows for which the prediction has failed, it has analogous input columns while the target column name is in the format of "errors_<target_column_specs display_name>", and as a value has `google.rpc.Status https://github.com/googleapis/googleapis/blob/master/google/rpc/status.proto` represented as a STRUCT, and containing only code and message.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

BatchPredictRequest

Request message for PredictionService.BatchPredict.

ParamsEntry

The abstract base class for a message.

BatchPredictResult

Result of the Batch Predict. This message is returned in response][google.longrunning.Operation.response] of the operation returned by the PredictionService.BatchPredict.

MetadataEntry

The abstract base class for a message.

BoundingBoxMetricsEntry

Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.

ConfidenceMetricsEntry

Metrics for a single confidence threshold.

BoundingPoly

A bounding polygon of a detected object on a plane. On output both vertices and normalized_vertices are provided. The polygon is formed by connecting vertices in the order they are listed.

ClassificationAnnotation

Contains annotation details specific to classification.

ClassificationEvaluationMetrics

Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of "segment_classification" type.

ConfidenceMetricsEntry

Metrics for a single confidence threshold.

ConfusionMatrix

Confusion matrix of the model running the classification.

Row

Output only. A row in the confusion matrix.

ClassificationType

Type of the classification problem.

CreateDatasetOperationMetadata

Details of CreateDataset operation.

CreateDatasetRequest

Request message for AutoMl.CreateDataset.

CreateModelOperationMetadata

Details of CreateModel operation.

CreateModelRequest

Request message for AutoMl.CreateModel.

Dataset

A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

LabelsEntry

The abstract base class for a message.

DeleteDatasetRequest

Request message for AutoMl.DeleteDataset.

DeleteModelRequest

Request message for AutoMl.DeleteModel.

DeleteOperationMetadata

Details of operations that perform deletes of any entities.

DeployModelOperationMetadata

Details of DeployModel operation.

DeployModelRequest

Request message for AutoMl.DeployModel.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

Document

A structured text document e.g. a PDF.

Layout

Describes the layout information of a text_segment in the document.

TextSegmentType

The type of TextSegment in the context of the original document.

DocumentDimensions

Message that describes dimension of a document.

DocumentDimensionUnit

Unit of the document dimension.

DocumentInputConfig

Input configuration of a Document.

ExamplePayload

Example data used for training or prediction.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ExportDataOperationMetadata

Details of ExportData operation.

ExportDataOutputInfo

Further describes this export data's output. Supplements OutputConfig.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ExportDataRequest

Request message for AutoMl.ExportData.

ExportModelOperationMetadata

Details of ExportModel operation.

ExportModelOutputInfo

Further describes the output of model export. Supplements ModelExportOutputConfig.

ExportModelRequest

Request message for AutoMl.ExportModel. Models need to be enabled for exporting, otherwise an error code will be returned.

GcsDestination

The Google Cloud Storage location where the output is to be written to.

GcsSource

The Google Cloud Storage location for the input content.

GetAnnotationSpecRequest

Request message for AutoMl.GetAnnotationSpec.

GetDatasetRequest

Request message for AutoMl.GetDataset.

GetModelEvaluationRequest

Request message for AutoMl.GetModelEvaluation.

GetModelRequest

Request message for AutoMl.GetModel.

Image

A representation of an image. Only images up to 30MB in size are supported.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ImageClassificationDatasetMetadata

Dataset metadata that is specific to image classification.

ImageClassificationModelDeploymentMetadata

Model deployment metadata specific to Image Classification.

ImageClassificationModelMetadata

Model metadata for image classification.

ImageObjectDetectionAnnotation

Annotation details for image object detection.

ImageObjectDetectionDatasetMetadata

Dataset metadata specific to image object detection.

ImageObjectDetectionEvaluationMetrics

Model evaluation metrics for image object detection problems. Evaluates prediction quality of labeled bounding boxes.

ImageObjectDetectionModelDeploymentMetadata

Model deployment metadata specific to Image Object Detection.

ImageObjectDetectionModelMetadata

Model metadata specific to image object detection.

ImportDataOperationMetadata

Details of ImportData operation.

ImportDataRequest

Request message for AutoMl.ImportData.

InputConfig

Input configuration for AutoMl.ImportData action.

The format of input depends on dataset_metadata the Dataset into which the import is happening has. As input source the gcs_source is expected, unless specified otherwise. Additionally any input .CSV file by itself must be 100MB or smaller, unless specified otherwise. If an "example" file (that is, image, video etc.) with identical content (even if it had different GCS_FILE_PATH) is mentioned multiple times, then its label, bounding boxes etc. are appended. The same file should be always provided with the same ML_USE and GCS_FILE_PATH, if it is not, then these values are nondeterministically selected from the given ones.

The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:

AutoML Vision:

Classification:

See Preparing your training data <https://cloud.google.com/vision/automl/docs/prepare>__ for more information.

CSV file(s) with each line in format:

::

ML_USE,GCS_FILE_PATH,LABEL,LABEL,...
  • ML_USE - Identifies the data set that the current row (file) applies to. This value can be one of the following:

    • TRAIN - Rows in this file are used to train the model.
    • TEST - Rows in this file are used to test the model during training.
    • UNASSIGNED - Rows in this file are not categorized. They are Automatically divided into train and test data. 80% for training and 20% for testing.
  • GCS_FILE_PATH - The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP, .TIFF, .ICO.

  • LABEL - A label that identifies the object in the image.

For the MULTICLASS classification type, at most one LABEL is allowed per image. If an image has not yet been labeled, then it should be mentioned just once with no LABEL.

Some sample rows:

::

TRAIN,gs://folder/image1.jpg,daisy
TEST,gs://folder/image2.jpg,dandelion,tulip,rose
UNASSIGNED,gs://folder/image3.jpg,daisy
UNASSIGNED,gs://folder/image4.jpg

Object Detection:

See Preparing your training data <https://cloud.google.com/vision/automl/object-detection/docs/prepare>__ for more information.

A CSV file(s) with each line in format:

::

ML_USE,GCS_FILE_PATH,[LABEL],(BOUNDING_BOX | ,,,,,,,)
  • ML_USE - Identifies the data set that the current row (file) applies to. This value can be one of the following:

    • TRAIN - Rows in this file are used to train the model.
    • TEST - Rows in this file are used to test the model during training.
    • UNASSIGNED - Rows in this file are not categorized. They are Automatically divided into train and test data. 80% for training and 20% for testing.
  • GCS_FILE_PATH - The Google Cloud Storage location of an image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. Each image is assumed to be exhaustively labeled.

  • LABEL - A label that identifies the object in the image specified by the BOUNDING_BOX.

  • BOUNDING BOX - The vertices of an object in the example image. The minimum allowed BOUNDING_BOX edge length is 0.01, and no more than 500 BOUNDING_BOX instances per image are allowed (one BOUNDING_BOX per line). If an image has no looked for objects then it should be mentioned just once with no LABEL and the ",,,,,,," in place of the BOUNDING_BOX.

Four sample rows:

::

TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,,
TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,,
UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3
TEST,gs://folder/im3.png,,,,,,,,,

.. raw:: html

  </section>
</div>

AutoML Video Intelligence:

Classification:

See Preparing your training data <https://cloud.google.com/video-intelligence/automl/docs/prepare>__ for more information.

CSV file(s) with each line in format:

::

ML_USE,GCS_FILE_PATH

For ML_USE, do not use VALIDATE.

GCS_FILE_PATH is the path to another .csv file that describes training example for a given ML_USE, using the following row format:

::

GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,)

Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI.

TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and the end time must be after the start time. Any segment of a video which has one or more labels on it, is considered a hard negative for all other labels. Any segment with no labels on it is considered to be unknown. If a whole video is unknown, then it should be mentioned just once with ",," in place of LABEL, TIME_SEGMENT_START,TIME_SEGMENT_END.

Sample top level CSV file:

::

TRAIN,gs://folder/train_videos.csv
TEST,gs://folder/test_videos.csv
UNASSIGNED,gs://folder/other_videos.csv

Sample rows of a CSV file for a particular ML_USE:

::

gs://folder/video1.avi,car,120,180.000021
gs://folder/video1.avi,bike,150,180.000021
gs://folder/vid2.avi,car,0,60.5
gs://folder/vid3.avi,,,

Object Tracking:

See Preparing your training data </video-intelligence/automl/object-tracking/docs/prepare>__ for more information.

CSV file(s) with each line in format:

::

ML_USE,GCS_FILE_PATH

For ML_USE, do not use VALIDATE.

GCS_FILE_PATH is the path to another .csv file that describes training example for a given ML_USE, using the following row format:

::

GCS_FILE_PATH,LABEL,[INSTANCE_ID],TIMESTAMP,BOUNDING_BOX

or

::

GCS_FILE_PATH,,,,,,,,,,

Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. Providing INSTANCE_ID\ s can help to obtain a better model. When a specific labeled entity leaves the video frame, and shows up afterwards it is not required, albeit preferable, that the same INSTANCE_ID is given to it.

TIMESTAMP must be within the length of the video, the BOUNDING_BOX is assumed to be drawn on the closest video's frame to the TIMESTAMP. Any mentioned by the TIMESTAMP frame is expected to be exhaustively labeled and no more than 500 BOUNDING_BOX-es per frame are allowed. If a whole video is unknown, then it should be mentioned just once with ",,,,,,,,,," in place of LABEL, [INSTANCE_ID],TIMESTAMP,BOUNDING_BOX.

Sample top level CSV file:

::

 TRAIN,gs://folder/train_videos.csv
 TEST,gs://folder/test_videos.csv
 UNASSIGNED,gs://folder/other_videos.csv

Seven sample rows of a CSV file for a particular ML_USE:

::

 gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9
 gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9
 gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3
 gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,,
 gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,,
 gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,,
 gs://folder/video2.avi,,,,,,,,,,,

AutoML Natural Language:

Entity Extraction:

See Preparing your training data </natural-language/automl/entity-analysis/docs/prepare>__ for more information.

One or more CSV file(s) with each line in the following format:

::

ML_USE,GCS_FILE_PATH
  • ML_USE - Identifies the data set that the current row (file) applies to. This value can be one of the following:

    • TRAIN - Rows in this file are used to train the model.
    • TEST - Rows in this file are used to test the model during training.
    • UNASSIGNED - Rows in this file are not categorized. They are Automatically divided into train and test data. 80% for training and 20% for testing..
  • GCS_FILE_PATH - a Identifies JSON Lines (.JSONL) file stored in Google Cloud Storage that contains in-line text in-line as documents for model training.

After the training data set has been determined from the TRAIN and UNASSIGNED CSV files, the training data is divided into train and validation data sets. 70% for training and 30% for validation.

For example:

::

TRAIN,gs://folder/file1.jsonl
VALIDATE,gs://folder/file2.jsonl
TEST,gs://folder/file3.jsonl

In-line JSONL files

In-line .JSONL files contain, per line, a JSON document that wraps a [text_snippet][google.cloud.automl.v1.TextSnippet] field followed by one or more [annotations][google.cloud.automl.v1.AnnotationPayload] fields, which have display_name and text_extraction fields to describe the entity from the text snippet. Multiple JSON documents can be separated using line breaks (\n).

The supplied text must be annotated exhaustively. For example, if you include the text "horse", but do not label it as "animal", then "horse" is assumed to not be an "animal".

Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded. ASCII is accepted as it is UTF-8 NFC encoded.

For example:

::

{
  "text_snippet": {
    "content": "dog car cat"
  },
  "annotations": [
     {
       "display_name": "animal",
       "text_extraction": {
         "text_segment": {"start_offset": 0, "end_offset": 2}
      }
     },
     {
      "display_name": "vehicle",
       "text_extraction": {
         "text_segment": {"start_offset": 4, "end_offset": 6}
       }
     },
     {
       "display_name": "animal",
       "text_extraction": {
         "text_segment": {"start_offset": 8, "end_offset": 10}
       }
     }
 ]
}\n
{
   "text_snippet": {
     "content": "This dog is good."
   },
   "annotations": [
      {
        "display_name": "animal",
        "text_extraction": {
          "text_segment": {"start_offset": 5, "end_offset": 7}
        }
      }
   ]
}

JSONL files that reference documents

.JSONL files contain, per line, a JSON document that wraps a input_config that contains the path to a source document. Multiple JSON documents can be separated using line breaks (\n).

Supported document extensions: .PDF, .TIF, .TIFF

For example:

::

{
  "document": {
    "input_config": {
      "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ]
      }
    }
  }
}\n
{
  "document": {
    "input_config": {
      "gcs_source": { "input_uris": [ "gs://folder/document2.tif" ]
      }
    }
  }
}

In-line JSONL files with document layout information

Note: You can only annotate documents using the UI. The format described below applies to annotated documents exported using the UI or exportData.

In-line .JSONL files for documents contain, per line, a JSON document that wraps a document field that provides the textual content of the document and the layout information.

For example:

::

{
  "document": {
          "document_text": {
            "content": "dog car cat"
          }
          "layout": [
            {
              "text_segment": {
                "start_offset": 0,
                "end_offset": 11,
               },
               "page_number": 1,
               "bounding_poly": {
                  "normalized_vertices": [
                    {"x": 0.1, "y": 0.1},
                    {"x": 0.1, "y": 0.3},
                    {"x": 0.3, "y": 0.3},
                    {"x": 0.3, "y": 0.1},
                  ],
                },
                "text_segment_type": TOKEN,
            }
          ],
          "document_dimensions": {
            "width": 8.27,
            "height": 11.69,
            "unit": INCH,
          }
          "page_count": 3,
        },
        "annotations": [
          {
            "display_name": "animal",
            "text_extraction": {
              "text_segment": {"start_offset": 0, "end_offset": 3}
            }
          },
          {
            "display_name": "vehicle",
            "text_extraction": {
              "text_segment": {"start_offset": 4, "end_offset": 7}
            }
          },
          {
            "display_name": "animal",
            "text_extraction": {
              "text_segment": {"start_offset": 8, "end_offset": 11}
            }
          },
        ],

Classification:

See Preparing your training data <https://cloud.google.com/natural-language/automl/docs/prepare>__ for more information.

One or more CSV file(s) with each line in the following format:

::

ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,...
  • ML_USE - Identifies the data set that the current row (file) applies to. This value can be one of the following:

    • TRAIN - Rows in this file are used to train the model.
    • TEST - Rows in this file are used to test the model during training.
    • UNASSIGNED - Rows in this file are not categorized. They are Automatically divided into train and test data. 80% for training and 20% for testing.
  • TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid Google Cloud Storage file path, that is, prefixed by "gs://", it is treated as a GCS_FILE_PATH. Otherwise, if the content is enclosed in double quotes (""), it is treated as a TEXT_SNIPPET. For GCS_FILE_PATH, the path must lead to a file with supported extension and UTF-8 encoding, for example, "gs://folder/content.txt" AutoML imports the file content as a text snippet. For TEXT_SNIPPET, AutoML imports the column content excluding quotes. In both cases, size of the content must be 10MB or less in size. For zip files, the size of each file inside the zip must be 10MB or less in size.

    For the MULTICLASS classification type, at most one LABEL is allowed.

    The ML_USE and LABEL columns are optional. Supported file extensions: .TXT, .PDF, .TIF, .TIFF, .ZIP

A maximum of 100 unique labels are allowed per CSV row.

Sample rows:

::

TRAIN,"They have bad food and very rude",RudeService,BadFood
gs://folder/content.txt,SlowService
TEST,gs://folder/document.pdf
VALIDATE,gs://folder/text_files.zip,BadFood

Sentiment Analysis:

See Preparing your training data <https://cloud.google.com/natural-language/automl/docs/prepare>__ for more information.

CSV file(s) with each line in format:

::

ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT
  • ML_USE - Identifies the data set that the current row (file) applies to. This value can be one of the following:

    • TRAIN - Rows in this file are used to train the model.
    • TEST - Rows in this file are used to test the model during training.
    • UNASSIGNED - Rows in this file are not categorized. They are Automatically divided into train and test data. 80% for training and 20% for testing.
  • TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid Google Cloud Storage file path, that is, prefixed by "gs://", it is treated as a GCS_FILE_PATH. Otherwise, if the content is enclosed in double quotes (""), it is treated as a TEXT_SNIPPET. For GCS_FILE_PATH, the path must lead to a file with supported extension and UTF-8 encoding, for example, "gs://folder/content.txt" AutoML imports the file content as a text snippet. For TEXT_SNIPPET, AutoML imports the column content excluding quotes. In both cases, size of the content must be 128kB or less in size. For zip files, the size of each file inside the zip must be 128kB or less in size.

    The ML_USE and SENTIMENT columns are optional. Supported file extensions: .TXT, .PDF, .TIF, .TIFF, .ZIP

  • SENTIMENT - An integer between 0 and Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive). Describes the ordinal of the sentiment - higher value means a more positive sentiment. All the values are completely relative, i.e. neither 0 needs to mean a negative or neutral sentiment nor sentiment_max needs to mean a positive one

    • it is just required that 0 is the least positive sentiment in the data, and sentiment_max is the most positive one. The SENTIMENT shouldn't be confused with "score" or "magnitude" from the previous Natural Language Sentiment Analysis API. All SENTIMENT values between 0 and sentiment_max must be represented in the imported data. On prediction the same 0 to sentiment_max range will be used. The difference between neighboring sentiment values needs not to be uniform, e.g. 1 and 2 may be similar whereas the difference between 2 and 3 may be large.

Sample rows:

::

TRAIN,"@freewrytin this is way too good for your product",2
gs://folder/content.txt,3
TEST,gs://folder/document.pdf
VALIDATE,gs://folder/text_files.zip,2

AutoML Tables:

See Preparing your training data <https://cloud.google.com/automl-tables/docs/prepare>__ for more information.

You can use either gcs_source or bigquery_source. All input is concatenated into a single primary_table_spec_id

For gcs_source:

CSV file(s), where the first row of the first file is the header, containing unique column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns.

Each .CSV file by itself must be 10GB or smaller, and their total size must be 100GB or smaller.

First three sample rows of a CSV file:

.. raw:: html

<pre>
"Id","First Name","Last Name","Dob","Addresses"
"1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
"2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]}
</pre>

For bigquery_source:

An URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller.

An imported table must have between 2 and 1,000 columns, inclusive, and between 1000 and 100,000,000 rows, inclusive. There are at most 5 import data running in parallel.

Input field definitions:

ML_USE : ("TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED") Describes how the given example (file) should be used for model training. "UNASSIGNED" can be used when user has no preference.

GCS_FILE_PATH : The path to a file on Google Cloud Storage. For example, "gs://folder/image1.png".

LABEL : A display name of an object on an image, video etc., e.g. "dog". Must be up to 32 characters long and can consist only of ASCII Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9. For each label an AnnotationSpec is created which display_name becomes the label; AnnotationSpecs are given back in predictions.

INSTANCE_ID : A positive integer that identifies a specific instance of a labeled entity on an example. Used e.g. to track two cars on a video while being able to tell apart which one is which.

BOUNDING_BOX : (VERTEX,VERTEX,VERTEX,VERTEX | VERTEX,,,VERTEX,,) A rectangle parallel to the frame of the example (image, video). If 4 vertices are given they are connected by edges in the order provided, if 2 are given they are recognized as diagonally opposite vertices of the rectangle.

VERTEX : (COORDINATE,COORDINATE) First coordinate is horizontal (x), the second is vertical (y).

COORDINATE : A float in 0 to 1 range, relative to total length of image or video in given dimension. For fractions the leading non-decimal 0 can be omitted (i.e. 0.3 = .3). Point 0,0 is in top left.

TIME_SEGMENT_START : (TIME_OFFSET) Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video).

TIME_SEGMENT_END : (TIME_OFFSET) Expresses an end, exclusive, of a time segment within n example that has a time dimension (e.g. video).

TIME_OFFSET : A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed, and it means the end of the example.

TEXT_SNIPPET : The content of a text snippet, UTF-8 encoded, enclosed within double quotes ("").

DOCUMENT : A field that provides the textual content with document and the layout information.

Errors:

If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and nothing is imported. Regardless of overall success or failure the per-row failures, up to a certain count cap, is listed in Operation.metadata.partial_failures.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ParamsEntry

The abstract base class for a message.

ListDatasetsRequest

Request message for AutoMl.ListDatasets.

ListDatasetsResponse

Response message for AutoMl.ListDatasets.

ListModelEvaluationsRequest

Request message for AutoMl.ListModelEvaluations.

ListModelEvaluationsResponse

Response message for AutoMl.ListModelEvaluations.

ListModelsRequest

Request message for AutoMl.ListModels.

ListModelsResponse

Response message for AutoMl.ListModels.

Model

API proto representing a trained machine learning model.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

DeploymentState

Deployment state of the model.

LabelsEntry

The abstract base class for a message.

ModelEvaluation

Evaluation results of a model.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ModelExportOutputConfig

Output configuration for ModelExport Action.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ParamsEntry

The abstract base class for a message.

NormalizedVertex

A vertex represents a 2D point in the image. The normalized vertex coordinates are between 0 to 1 fractions relative to the original plane (image, video). E.g. if the plane (e.g. whole image) would have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would be at the position (1, 6) on that plane.

OperationMetadata

Metadata used across all long running operations returned by AutoML API.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

OutputConfig

  • For Translation: CSV file translation.csv, with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .TSV file which describes examples that have given ML_USE, using the following row format per line: TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target language)

    • For Tables: Output depends on whether the dataset was imported from Google Cloud Storage or BigQuery. Google Cloud Storage case: gcs_destination must be set. Exported are CSV file(s) tables_1.csv, tables_2.csv,...,\ tables_N.csv with each having as header line the table's column names, and all other lines contain values for the header columns. BigQuery case: bigquery_destination pointing to a BigQuery project must be set. In the given project a new dataset will be created with name export_data_<automl-dataset-display-name>_<timestamp-of-export-call> where will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In that dataset a new table called primary_table will be created, and filled with precisely the same data as this obtained on import.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

PredictRequest

Request message for PredictionService.Predict.

ParamsEntry

The abstract base class for a message.

PredictResponse

Response message for PredictionService.Predict.

MetadataEntry

The abstract base class for a message.

TextClassificationDatasetMetadata

Dataset metadata for classification.

TextClassificationModelMetadata

Model metadata that is specific to text classification.

TextExtractionAnnotation

Annotation for identifying spans of text.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

TextExtractionDatasetMetadata

Dataset metadata that is specific to text extraction

TextExtractionEvaluationMetrics

Model evaluation metrics for text extraction problems.

ConfidenceMetricsEntry

Metrics for a single confidence threshold.

TextExtractionModelMetadata

Model metadata that is specific to text extraction.

TextSegment

A contiguous part of a text (string), assuming it has an UTF-8 NFC encoding.

TextSentimentAnnotation

Contains annotation details specific to text sentiment.

TextSentimentDatasetMetadata

Dataset metadata for text sentiment.

TextSentimentEvaluationMetrics

Model evaluation metrics for text sentiment problems.

TextSentimentModelMetadata

Model metadata that is specific to text sentiment.

TextSnippet

A representation of a text snippet.

TranslationAnnotation

Annotation details specific to translation.

TranslationDatasetMetadata

Dataset metadata that is specific to translation.

TranslationEvaluationMetrics

Evaluation metrics for the dataset.

TranslationModelMetadata

Model metadata that is specific to translation.

UndeployModelOperationMetadata

Details of UndeployModel operation.

UndeployModelRequest

Request message for AutoMl.UndeployModel.

UpdateDatasetRequest

Request message for AutoMl.UpdateDataset

UpdateModelRequest

Request message for AutoMl.UpdateModel

AutoMlAsyncClient

AutoML Server API.

The resource names are assigned by the server. The server never reuses names that it has created after the resources with those names are deleted.

An ID of a resource is the last element of the item's resource name. For projects/{project_id}/locations/{location_id}/datasets/{dataset_id}, then the id for the item is {dataset_id}.

Currently the only supported location_id is "us-central1".

On any input that is documented to expect a string parameter in snake_case or kebab-case, either of those cases is accepted.

AutoMlClient

AutoML Server API.

The resource names are assigned by the server. The server never reuses names that it has created after the resources with those names are deleted.

An ID of a resource is the last element of the item's resource name. For projects/{project_id}/locations/{location_id}/datasets/{dataset_id}, then the id for the item is {dataset_id}.

Currently the only supported location_id is "us-central1".

On any input that is documented to expect a string parameter in snake_case or kebab-case, either of those cases is accepted.

ListColumnSpecsAsyncPager

A pager for iterating through list_column_specs requests.

This class thinly wraps an initial ListColumnSpecsResponse object, and provides an __aiter__ method to iterate through its column_specs field.

If there are more pages, the __aiter__ method will make additional ListColumnSpecs requests and continue to iterate through the column_specs field on the corresponding responses.

All the usual ListColumnSpecsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListColumnSpecsPager

A pager for iterating through list_column_specs requests.

This class thinly wraps an initial ListColumnSpecsResponse object, and provides an __iter__ method to iterate through its column_specs field.

If there are more pages, the __iter__ method will make additional ListColumnSpecs requests and continue to iterate through the column_specs field on the corresponding responses.

All the usual ListColumnSpecsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListDatasetsAsyncPager

A pager for iterating through list_datasets requests.

This class thinly wraps an initial ListDatasetsResponse object, and provides an __aiter__ method to iterate through its datasets field.

If there are more pages, the __aiter__ method will make additional ListDatasets requests and continue to iterate through the datasets field on the corresponding responses.

All the usual ListDatasetsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListDatasetsPager

A pager for iterating through list_datasets requests.

This class thinly wraps an initial ListDatasetsResponse object, and provides an __iter__ method to iterate through its datasets field.

If there are more pages, the __iter__ method will make additional ListDatasets requests and continue to iterate through the datasets field on the corresponding responses.

All the usual ListDatasetsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListModelEvaluationsAsyncPager

A pager for iterating through list_model_evaluations requests.

This class thinly wraps an initial ListModelEvaluationsResponse object, and provides an __aiter__ method to iterate through its model_evaluation field.

If there are more pages, the __aiter__ method will make additional ListModelEvaluations requests and continue to iterate through the model_evaluation field on the corresponding responses.

All the usual ListModelEvaluationsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListModelEvaluationsPager

A pager for iterating through list_model_evaluations requests.

This class thinly wraps an initial ListModelEvaluationsResponse object, and provides an __iter__ method to iterate through its model_evaluation field.

If there are more pages, the __iter__ method will make additional ListModelEvaluations requests and continue to iterate through the model_evaluation field on the corresponding responses.

All the usual ListModelEvaluationsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListModelsAsyncPager

A pager for iterating through list_models requests.

This class thinly wraps an initial ListModelsResponse object, and provides an __aiter__ method to iterate through its model field.

If there are more pages, the __aiter__ method will make additional ListModels requests and continue to iterate through the model field on the corresponding responses.

All the usual ListModelsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListModelsPager

A pager for iterating through list_models requests.

This class thinly wraps an initial ListModelsResponse object, and provides an __iter__ method to iterate through its model field.

If there are more pages, the __iter__ method will make additional ListModels requests and continue to iterate through the model field on the corresponding responses.

All the usual ListModelsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListTableSpecsAsyncPager

A pager for iterating through list_table_specs requests.

This class thinly wraps an initial ListTableSpecsResponse object, and provides an __aiter__ method to iterate through its table_specs field.

If there are more pages, the __aiter__ method will make additional ListTableSpecs requests and continue to iterate through the table_specs field on the corresponding responses.

All the usual ListTableSpecsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

ListTableSpecsPager

A pager for iterating through list_table_specs requests.

This class thinly wraps an initial ListTableSpecsResponse object, and provides an __iter__ method to iterate through its table_specs field.

If there are more pages, the __iter__ method will make additional ListTableSpecs requests and continue to iterate through the table_specs field on the corresponding responses.

All the usual ListTableSpecsResponse attributes are available on the pager. If multiple requests are made, only the most recent response is retained, and thus used for attribute lookup.

PredictionServiceAsyncClient

AutoML Prediction API.

On any input that is documented to expect a string parameter in snake_case or kebab-case, either of those cases is accepted.

PredictionServiceClient

AutoML Prediction API.

On any input that is documented to expect a string parameter in snake_case or kebab-case, either of those cases is accepted.

GcsClient

Uploads Pandas DataFrame to a bucket in Google Cloud Storage.

TablesClient

AutoML Tables API helper.

This is intended to simplify usage of the auto-generated python client, in particular for the AutoML Tables product <https://cloud.google.com/automl-tables/>_.

AnnotationPayload

Contains annotation information that is relevant to AutoML.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

AnnotationSpec

A definition of an annotation spec.

ArrayStats

The data statistics of a series of ARRAY values.

BatchPredictInputConfig

Input configuration for BatchPredict Action.

The format of input depends on the ML problem of the model used for prediction. As input source the gcs_source is expected, unless specified otherwise.

The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:

  • For Image Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png

  • For Image Object Detection: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png

  • For Video Classification: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60 gs://folder/vid2.mov,0,inf

  • For Video Object Tracking: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,240 gs://folder/video1.mp4,300,360 gs://folder/vid2.mov,0,inf

  • For Text Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 60,000 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf

  • For Text Sentiment: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 500 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf

  • For Text Extraction .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or as documents (for a single BatchPredict call only one of the these formats may be used). The in-line .JSONL file(s) contain per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called "id", a TextSnippet proto (in json representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique. The document .JSONL file(s) contain, per line, a proto that wraps a Document proto with input_config set. Only PDF documents are supported now, and each document must be up to 2MB large. Any given .JSONL file must be 100MB or smaller, and no more than 20 files may be given. Sample in-line JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n): { "id": "my_first_id", "text_snippet": { "content": "dog car cat"}, "text_features": [ { "text_segment": {"start_offset": 4, "end_offset": 6}, "structural_type": PARAGRAPH, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ] }, } ], }\n { "id": "2", "text_snippet": { "content": "An elaborate content", "mime_type": "text/plain" } } Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } }

  • For Tables: Either gcs_source or

bigquery_source. GCS case: CSV file(s), each by itself 10GB or smaller and total size must be 100GB or smaller, where first file must have a header containing column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns. The column names must contain the model's

[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]

display_name-s (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows, i.e. the CSV lines, will be attempted. For FORECASTING

prediction_type: all columns having

TIME_SERIES_AVAILABLE_PAST_ONLY type will be ignored. First three sample rows of a CSV file: "First Name","Last Name","Dob","Addresses"

"John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"

"Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]} BigQuery case: An URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller. The column names must contain the model's

[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]

display_name-s (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows of the table will be attempted. For FORECASTING

prediction_type: all columns having

TIME_SERIES_AVAILABLE_PAST_ONLY type will be ignored.

Definitions: GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi". TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within double quotes ("") TIME_SEGMENT_START = TIME_OFFSET Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_SEGMENT_END = TIME_OFFSET Expresses an end, exclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_OFFSET = A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed and it means the end of the example.

Errors: If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and prediction does not happen. Regardless of overall success or failure the per-row failures, up to a certain count cap, will be listed in Operation.metadata.partial_failures.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

BatchPredictOperationMetadata

Details of BatchPredict operation.

BatchPredictOutputInfo

Further describes this batch predict's output. Supplements

BatchPredictOutputConfig.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

BatchPredictOutputConfig

Output configuration for BatchPredict Action.

As destination the

gcs_destination must be set unless specified otherwise for a domain. If gcs_destination is set then in the given directory a new directory is created. Its name will be "prediction--", where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents of it depends on the ML problem the predictions are made for. - For Image Classification: In the created directory files image_classification_1.jsonl, image_classification_2.jsonl,...,\ image_classification_N.jsonl will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. A single image will be listed only once with all its annotations, and its annotations will never be split across files. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. If prediction for any image failed (partially or completely), then an additional errors_1.jsonl, errors_2.jsonl,..., errors_N.jsonl files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one [google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only code and message\ fields. - For Image Object Detection: In the created directory files image_object_detection_1.jsonl, image_object_detection_2.jsonl,...,\ image_object_detection_N.jsonl will be created, where N may be 1, and depends on the total number of the successfully predicted images and annotations. Each .JSONL file will contain, per line, a JSON representation of a proto that wraps image's "ID" : "<id_value>" followed by a list of zero or more AnnotationPayload protos (called annotations), which have image_object_detection detail populated. A single image will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any image failed (partially or completely), then additional errors_1.jsonl, errors_2.jsonl,..., errors_N.jsonl files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps the same "ID" : "<id_value>" but here followed by exactly one [google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only code and message\ fields. - For Video Classification: In the created directory a video_classification.csv file, and a .JSON file per each video classification requested in the input (i.e. each line in given CSV(s)), will be created. :: The format of video_classification.csv is: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_classification.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty. :: Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for the video time segment the file is assigned to in the video_classification.csv. All AnnotationPayload protos will have video_classification field set, and will be sorted by video_classification.type field (note that the returned types are governed by classifaction_types parameter in [PredictService.BatchPredictRequest.params][]). - For Video Object Tracking: In the created directory a video_object_tracking.csv file will be created, and multiple files video_object_trackinng_1.json, video_object_trackinng_2.json,..., video_object_trackinng_N.json, where N is the number of requests in the input (i.e. the number of lines in given CSV(s)). :: The format of video_object_tracking.csv is: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1 to 1 the prediction input lines (i.e. video_object_tracking.csv has precisely the same number of lines as the prediction input had.) JSON_FILE_NAME = Name of .JSON file in the output directory, which contains prediction responses for the video time segment. STATUS = "OK" if prediction completed successfully, or an error code with message otherwise. If STATUS is not "OK" then the .JSON file for that line may not exist or be empty. :: Each .JSON file, assuming STATUS is "OK", will contain a list of AnnotationPayload protos in JSON format, which are the predictions for each frame of the video time segment the file is assigned to in video_object_tracking.csv. All AnnotationPayload protos will have video_object_tracking field set. - For Text Classification: In the created directory files text_classification_1.jsonl, text_classification_2.jsonl,...,\ text_classification_N.jsonl will be created, where N may be 1, and depends on the total number of inputs and annotations found. :: Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text snippet or input text file and a list of zero or more AnnotationPayload protos (called annotations), which have classification detail populated. A single text snippet or file will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet or file failed (partially or completely), then additional errors_1.jsonl, errors_2.jsonl,..., errors_N.jsonl files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input text snippet or input text file followed by exactly one [google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only code and message. - For Text Sentiment: In the created directory files text_sentiment_1.jsonl, text_sentiment_2.jsonl,...,\ text_sentiment_N.jsonl will be created, where N may be 1, and depends on the total number of inputs and annotations found. :: Each .JSONL file will contain, per line, a JSON representation of a proto that wraps input text snippet or input text file and a list of zero or more AnnotationPayload protos (called annotations), which have text_sentiment detail populated. A single text snippet or file will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet or file failed (partially or completely), then additional errors_1.jsonl, errors_2.jsonl,..., errors_N.jsonl files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps input text snippet or input text file followed by exactly one [google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only code and message. - For Text Extraction: In the created directory files text_extraction_1.jsonl, text_extraction_2.jsonl,...,\ text_extraction_N.jsonl will be created, where N may be 1, and depends on the total number of inputs and annotations found. The contents of these .JSONL file(s) depend on whether the input used inline text, or documents. If input was inline, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request text snippet's "id" (if specified), followed by input text snippet, and a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated. A single text snippet will be listed only once with all its annotations, and its annotations will never be split across files. If input used documents, then each .JSONL file will contain, per line, a JSON representation of a proto that wraps given in request document proto, followed by its OCR-ed representation in the form of a text snippet, finally followed by a list of zero or more AnnotationPayload protos (called annotations), which have text_extraction detail populated and refer, via their indices, to the OCR-ed text snippet. A single document (and its text snippet) will be listed only once with all its annotations, and its annotations will never be split across files. If prediction for any text snippet failed (partially or completely), then additional errors_1.jsonl, errors_2.jsonl,..., errors_N.jsonl files will be created (N depends on total number of failed predictions). These files will have a JSON representation of a proto that wraps either the "id" : "<id_value>" (in case of inline) or the document proto (in case of document) but here followed by exactly one [google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) containing only code and message. - For Tables: Output depends on whether gcs_destination or bigquery_destination is set (either is allowed). GCS case: In the created directory files tables_1.csv, tables_2.csv,..., tables_N.csv will be created, where N may be 1, and depends on the total number of the successfully predicted rows. For all CLASSIFICATION prediction_type-s: Each .csv file will contain a header, listing all columns' display_name-s given on input followed by M target column names in the format of "<target_column_specs display_name>__score" where M is the number of distinct target values, i.e. number of distinct values in the target column of the table used to train the model. Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, columns having the corresponding prediction scores. For REGRESSION and FORECASTING prediction_type-s: Each .csv file will contain a header, listing all columns' display_name-s given on input followed by the predicted target column with name in the format of "predicted_<target_column_specs display_name>" Subsequent lines will contain the respective values of successfully predicted rows, with the last, i.e. the target, column having the predicted target value. If prediction for any rows failed, then an additional errors_1.csv, errors_2.csv,..., errors_N.csv will be created (N depends on total number of failed rows). These files will have analogous format as tables_*.csv, but always with a single target column having [google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) represented as a JSON string, and containing only code and message. BigQuery case: bigquery_destination pointing to a BigQuery project must be set. In the given project a new dataset will be created with name prediction_<model-display-name>_<timestamp-of-prediction-call> where will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset two tables will be created, predictions, and errors. The predictions table's column names will be the input columns' display_name-s followed by the target column with name in the format of "predicted_<target_column_specs display_name>" The input feature columns will contain the respective values of successfully predicted rows, with the target column having an ARRAY of AnnotationPayloads, represented as STRUCT-s, containing TablesAnnotation. The errors table contains rows for which the prediction has failed, it has analogous input columns while the target column name is in the format of "errors_<target_column_specs

display_name>", and as a value has

[google.rpc.Status](https: //github.com/googleapis/googleapis/blob/master/google/rpc/status.proto) represented as a STRUCT, and containing only code and message.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

BatchPredictRequest

Request message for PredictionService.BatchPredict.

ParamsEntry

The abstract base class for a message.

BatchPredictResult

Result of the Batch Predict. This message is returned in response][google.longrunning.Operation.response] of the operation returned by the PredictionService.BatchPredict.

MetadataEntry

The abstract base class for a message.

BigQueryDestination

The BigQuery location for the output content.

BigQuerySource

The BigQuery location for the input content.

BoundingBoxMetricsEntry

Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.

ConfidenceMetricsEntry

Metrics for a single confidence threshold.

BoundingPoly

A bounding polygon of a detected object on a plane. On output both vertices and normalized_vertices are provided. The polygon is formed by connecting vertices in the order they are listed.

CategoryStats

The data statistics of a series of CATEGORY values.

SingleCategoryStats

The statistics of a single CATEGORY value.

ClassificationAnnotation

Contains annotation details specific to classification.

ClassificationEvaluationMetrics

Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of "segment_classification" type.

ConfidenceMetricsEntry

Metrics for a single confidence threshold.

ConfusionMatrix

Confusion matrix of the model running the classification.

Row

Output only. A row in the confusion matrix.

ClassificationType

Type of the classification problem.

ColumnSpec

A representation of a column in a relational table. When listing them, column specs are returned in the same order in which they were given on import . Used by:

  • Tables

CorrelatedColumn

Identifies the table's column, and its correlation with the column this ColumnSpec describes.

CorrelationStats

A correlation statistics between two series of DataType values. The series may have differing DataType-s, but within a single series the DataType must be the same.

CreateDatasetRequest

Request message for AutoMl.CreateDataset.

CreateModelOperationMetadata

Details of CreateModel operation.

CreateModelRequest

Request message for AutoMl.CreateModel.

DataStats

The data statistics of a series of values that share the same DataType.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

DataType

Indicated the type of data that can be stored in a structured data entity (e.g. a table).

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

Dataset

A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

DeleteDatasetRequest

Request message for AutoMl.DeleteDataset.

DeleteModelRequest

Request message for AutoMl.DeleteModel.

DeleteOperationMetadata

Details of operations that perform deletes of any entities.

DeployModelOperationMetadata

Details of DeployModel operation.

DeployModelRequest

Request message for AutoMl.DeployModel.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

Document

A structured text document e.g. a PDF.

Layout

Describes the layout information of a text_segment in the document.

TextSegmentType

The type of TextSegment in the context of the original document.

DocumentDimensions

Message that describes dimension of a document.

DocumentDimensionUnit

Unit of the document dimension.

DocumentInputConfig

Input configuration of a Document.

DoubleRange

A range between two double numbers.

ExamplePayload

Example data used for training or prediction.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ExportDataOperationMetadata

Details of ExportData operation.

ExportDataOutputInfo

Further describes this export data's output. Supplements OutputConfig.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ExportDataRequest

Request message for AutoMl.ExportData.

ExportEvaluatedExamplesOperationMetadata

Details of EvaluatedExamples operation.

ExportEvaluatedExamplesOutputInfo

Further describes the output of the evaluated examples export. Supplements

ExportEvaluatedExamplesOutputConfig.

ExportEvaluatedExamplesOutputConfig

Output configuration for ExportEvaluatedExamples Action. Note that this call is available only for 30 days since the moment the model was evaluated. The output depends on the domain, as follows (note that only examples from the TEST set are exported):

  • For Tables:

bigquery_destination pointing to a BigQuery project must be set. In the given project a new dataset will be created with name

export_evaluated_examples_<model-display-name>_<timestamp-of-export-call> where will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the dataset an evaluated_examples table will be created. It will have all the same columns as the

primary_table of the dataset from which the model was created, as they were at the moment of model's evaluation (this includes the target column with its ground truth), followed by a column called "predicted_<target_column>". That last column will contain the model's prediction result for each respective row, given as ARRAY of AnnotationPayloads, represented as STRUCT-s, containing TablesAnnotation.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ExportEvaluatedExamplesRequest

Request message for AutoMl.ExportEvaluatedExamples.

ExportModelOperationMetadata

Details of ExportModel operation.

ExportModelOutputInfo

Further describes the output of model export. Supplements

ModelExportOutputConfig.

ExportModelRequest

Request message for AutoMl.ExportModel. Models need to be enabled for exporting, otherwise an error code will be returned.

Float64Stats

The data statistics of a series of FLOAT64 values.

HistogramBucket

A bucket of a histogram.

GcrDestination

The GCR location where the image must be pushed to.

GcsDestination

The Google Cloud Storage location where the output is to be written to.

GcsSource

The Google Cloud Storage location for the input content.

GetAnnotationSpecRequest

Request message for AutoMl.GetAnnotationSpec.

GetColumnSpecRequest

Request message for AutoMl.GetColumnSpec.

GetDatasetRequest

Request message for AutoMl.GetDataset.

GetModelEvaluationRequest

Request message for AutoMl.GetModelEvaluation.

GetModelRequest

Request message for AutoMl.GetModel.

GetTableSpecRequest

Request message for AutoMl.GetTableSpec.

Image

A representation of an image. Only images up to 30MB in size are supported.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ImageClassificationDatasetMetadata

Dataset metadata that is specific to image classification.

ImageClassificationModelDeploymentMetadata

Model deployment metadata specific to Image Classification.

ImageClassificationModelMetadata

Model metadata for image classification.

ImageObjectDetectionAnnotation

Annotation details for image object detection.

ImageObjectDetectionDatasetMetadata

Dataset metadata specific to image object detection.

ImageObjectDetectionEvaluationMetrics

Model evaluation metrics for image object detection problems. Evaluates prediction quality of labeled bounding boxes.

ImageObjectDetectionModelDeploymentMetadata

Model deployment metadata specific to Image Object Detection.

ImageObjectDetectionModelMetadata

Model metadata specific to image object detection.

ImportDataOperationMetadata

Details of ImportData operation.

ImportDataRequest

Request message for AutoMl.ImportData.

InputConfig

Input configuration for ImportData Action.

The format of input depends on dataset_metadata the Dataset into which the import is happening has. As input source the gcs_source is expected, unless specified otherwise. Additionally any input .CSV file by itself must be 100MB or smaller, unless specified otherwise. If an "example" file (that is, image, video etc.) with identical content (even if it had different GCS_FILE_PATH) is mentioned multiple times, then its label, bounding boxes etc. are appended. The same file should be always provided with the same ML_USE and GCS_FILE_PATH, if it is not, then these values are nondeterministically selected from the given ones.

The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:

  • For Image Classification: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,LABEL,LABEL,... GCS_FILE_PATH leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP, .TIFF, .ICO For MULTICLASS classification type, at most one LABEL is allowed per image. If an image has not yet been labeled, then it should be mentioned just once with no LABEL. Some sample rows: TRAIN,gs://folder/image1.jpg,daisy TEST,gs://folder/image2.jpg,dandelion,tulip,rose UNASSIGNED,gs://folder/image3.jpg,daisy UNASSIGNED,gs://folder/image4.jpg

  • For Image Object Detection: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,(LABEL,BOUNDING_BOX | ,,,,,,,) GCS_FILE_PATH leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. Each image is assumed to be exhaustively labeled. The minimum allowed BOUNDING_BOX edge length is 0.01, and no more than 500 BOUNDING_BOX-es per image are allowed (one BOUNDING_BOX is defined per line). If an image has not yet been labeled, then it should be mentioned just once with no LABEL and the ",,,,,,," in place of the BOUNDING_BOX. For images which are known to not contain any bounding boxes, they should be labelled explictly as "NEGATIVE_IMAGE", followed by ",,,,,,," in place of the BOUNDING_BOX. Sample rows: TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,, TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,, UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3 TEST,gs://folder/im3.png,,,,,,,,, TRAIN,gs://folder/im4.png,NEGATIVE_IMAGE,,,,,,,,,

  • For Video Classification: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH should lead to another .csv file which describes examples that have given ML_USE, using the following row format: GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,) Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Any segment of a video which has one or more labels on it, is considered a hard negative for all other labels. Any segment with no labels on it is considered to be unknown. If a whole video is unknown, then it shuold be mentioned just once with ",," in place of LABEL, TIME_SEGMENT_START,TIME_SEGMENT_END. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,120,180.000021 gs://folder/video1.avi,bike,150,180.000021 gs://folder/vid2.avi,car,0,60.5 gs://folder/vid3.avi,,,

  • For Video Object Tracking: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH should lead to another .csv file which describes examples that have given ML_USE, using one of the following row format: GCS_FILE_PATH,LABEL,[INSTANCE_ID],TIMESTAMP,BOUNDING_BOX or GCS_FILE_PATH,,,,,,,,,, Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. Providing INSTANCE_IDs can help to obtain a better model. When a specific labeled entity leaves the video frame, and shows up afterwards it is not required, albeit preferable, that the same INSTANCE_ID is given to it. TIMESTAMP must be within the length of the video, the BOUNDING_BOX is assumed to be drawn on the closest video's frame to the TIMESTAMP. Any mentioned by the TIMESTAMP frame is expected to be exhaustively labeled and no more than 500 BOUNDING_BOX-es per frame are allowed. If a whole video is unknown, then it should be mentioned just once with ",,,,,,,,,," in place of LABEL, [INSTANCE_ID],TIMESTAMP,BOUNDING_BOX. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Seven sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9 gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9 gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3 gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,, gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,, gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,, gs://folder/video2.avi,,,,,,,,,,,

  • For Text Extraction: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .JSONL (that is, JSON Lines) file which either imports text in-line or as documents. Any given .JSONL file must be 100MB or smaller. The in-line .JSONL file contains, per line, a proto that wraps a TextSnippet proto (in json representation) followed by one or more AnnotationPayload protos (called annotations), which have display_name and text_extraction detail populated. The given text is expected to be annotated exhaustively, for example, if you look for animals and text contains "dolphin" that is not labeled, then "dolphin" is assumed to not be an animal. Any given text snippet content must be 10KB or smaller, and also be UTF-8 NFC encoded (ASCII already is). The document .JSONL file contains, per line, a proto that wraps a Document proto. The Document proto must have either document_text or input_config set. In document_text case, the Document proto may also contain the spatial information of the document, including layout, document dimension and page number. In input_config case, only PDF documents are supported now, and each document may be up to 2MB large. Currently, annotations on documents cannot be specified at import. Three sample CSV rows: TRAIN,gs://folder/file1.jsonl VALIDATE,gs://folder/file2.jsonl TEST,gs://folder/file3.jsonl Sample in-line JSON Lines file for entity extraction (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "document_text": {"content": "dog cat"} "layout": [ { "text_segment": { "start_offset": 0, "end_offset": 3, }, "page_number": 1, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ], }, "text_segment_type": TOKEN, }, { "text_segment": { "start_offset": 4, "end_offset": 7, }, "page_number": 1, "bounding_poly": { "normalized_vertices": [ {"x": 0.4, "y": 0.1}, {"x": 0.4, "y": 0.3}, {"x": 0.8, "y": 0.3}, {"x": 0.8, "y": 0.1}, ], }, "text_segment_type": TOKEN, }

    ::

         ],
         "document_dimensions": {
           "width": 8.27,
           "height": 11.69,
           "unit": INCH,
         }
         "page_count": 1,
       },
       "annotations": [
         {
           "display_name": "animal",
           "text_extraction": {"text_segment": {"start_offset": 0,
           "end_offset": 3}}
         },
         {
           "display_name": "animal",
           "text_extraction": {"text_segment": {"start_offset": 4,
           "end_offset": 7}}
         }
       ],
     }\n
     {
        "text_snippet": {
          "content": "This dog is good."
        },
        "annotations": [
          {
            "display_name": "animal",
            "text_extraction": {
              "text_segment": {"start_offset": 5, "end_offset": 8}
            }
          }
        ]
     }
    

    Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } }

  • For Text Classification: CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,... TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid gcs file path, i.e. prefixed by "gs://", it will be treated as a GCS_FILE_PATH, else if the content is enclosed within double quotes (""), it is treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path must lead to a .txt file with UTF-8 encoding, for example, "gs://folder/content.txt", and the content in it is extracted as a text snippet. In TEXT_SNIPPET case, the column content excluding quotes is treated as to be imported text snippet. In both cases, the text snippet/file size must be within 128kB. Maximum 100 unique labels are allowed per CSV row. Sample rows: TRAIN,"They have bad food and very rude",RudeService,BadFood TRAIN,gs://folder/content.txt,SlowService TEST,"Typically always bad service there.",RudeService VALIDATE,"Stomach ache to go.",BadFood

  • For Text Sentiment: CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid gcs file path, that is, prefixed by "gs://", it is treated as a GCS_FILE_PATH, otherwise it is treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path must lead to a .txt file with UTF-8 encoding, for example, "gs://folder/content.txt", and the content in it is extracted as a text snippet. In TEXT_SNIPPET case, the column content itself is treated as to be imported text snippet. In both cases, the text snippet must be up to 500 characters long. Sample rows: TRAIN,"@freewrytin this is way too good for your product",2 TRAIN,"I need this product so bad",3 TEST,"Thank you for this product.",4 VALIDATE,gs://folder/content.txt,2

  • For Tables: Either gcs_source or

bigquery_source can be used. All inputs is concatenated into a single

primary_table For gcs_source: CSV file(s), where the first row of the first file is the header, containing unique column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns. Each .CSV file by itself must be 10GB or smaller, and their total size must be 100GB or smaller. First three sample rows of a CSV file: "Id","First Name","Last Name","Dob","Addresses"

"1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"

"2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]} For bigquery_source: An URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller. An imported table must have between 2 and 1,000 columns, inclusive, and between 1000 and 100,000,000 rows, inclusive. There are at most 5 import data running in parallel. Definitions: ML_USE = "TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED" Describes how the given example (file) should be used for model training. "UNASSIGNED" can be used when user has no preference. GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/image1.png". LABEL = A display name of an object on an image, video etc., e.g. "dog". Must be up to 32 characters long and can consist only of ASCII Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9. For each label an AnnotationSpec is created which display_name becomes the label; AnnotationSpecs are given back in predictions. INSTANCE_ID = A positive integer that identifies a specific instance of a labeled entity on an example. Used e.g. to track two cars on a video while being able to tell apart which one is which. BOUNDING_BOX = VERTEX,VERTEX,VERTEX,VERTEX | VERTEX,,,VERTEX,, A rectangle parallel to the frame of the example (image, video). If 4 vertices are given they are connected by edges in the order provided, if 2 are given they are recognized as diagonally opposite vertices of the rectangle. VERTEX = COORDINATE,COORDINATE First coordinate is horizontal (x), the second is vertical (y). COORDINATE = A float in 0 to 1 range, relative to total length of image or video in given dimension. For fractions the leading non-decimal 0 can be omitted (i.e. 0.3 = .3). Point 0,0 is in top left. TIME_SEGMENT_START = TIME_OFFSET Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_SEGMENT_END = TIME_OFFSET Expresses an end, exclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_OFFSET = A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed, and it means the end of the example. TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within double quotes (""). SENTIMENT = An integer between 0 and Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive). Describes the ordinal of the sentiment - higher value means a more positive sentiment. All the values are completely relative, i.e. neither 0 needs to mean a negative or neutral sentiment nor sentiment_max needs to mean a positive one - it is just required that 0 is the least positive sentiment in the data, and sentiment_max is the most positive one. The SENTIMENT shouldn't be confused with "score" or "magnitude" from the previous Natural Language Sentiment Analysis API. All SENTIMENT values between 0 and sentiment_max must be represented in the imported data. On prediction the same 0 to sentiment_max range will be used. The difference between neighboring sentiment values needs not to be uniform, e.g. 1 and 2 may be similar whereas the difference between 2 and 3 may be huge.

Errors: If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and nothing is imported. Regardless of overall success or failure the per-row failures, up to a certain count cap, is listed in Operation.metadata.partial_failures.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ParamsEntry

The abstract base class for a message.

ListColumnSpecsRequest

Request message for AutoMl.ListColumnSpecs.

ListColumnSpecsResponse

Response message for AutoMl.ListColumnSpecs.

ListDatasetsRequest

Request message for AutoMl.ListDatasets.

ListDatasetsResponse

Response message for AutoMl.ListDatasets.

ListModelEvaluationsRequest

Request message for AutoMl.ListModelEvaluations.

ListModelEvaluationsResponse

Response message for AutoMl.ListModelEvaluations.

ListModelsRequest

Request message for AutoMl.ListModels.

ListModelsResponse

Response message for AutoMl.ListModels.

ListTableSpecsRequest

Request message for AutoMl.ListTableSpecs.

ListTableSpecsResponse

Response message for AutoMl.ListTableSpecs.

Model

API proto representing a trained machine learning model.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

DeploymentState

Deployment state of the model.

ModelEvaluation

Evaluation results of a model.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ModelExportOutputConfig

Output configuration for ModelExport Action.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

ParamsEntry

The abstract base class for a message.

NormalizedVertex

A vertex represents a 2D point in the image. The normalized vertex coordinates are between 0 to 1 fractions relative to the original plane (image, video). E.g. if the plane (e.g. whole image) would have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would be at the position (1, 6) on that plane.

OperationMetadata

Metadata used across all long running operations returned by AutoML API.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

OutputConfig

  • For Translation: CSV file translation.csv, with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .TSV file which describes examples that have given ML_USE, using the following row format per line: TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target language)

    • For Tables: Output depends on whether the dataset was imported from GCS or BigQuery. GCS case:

gcs_destination must be set. Exported are CSV file(s) tables_1.csv, tables_2.csv,...,\ tables_N.csv with each having as header line the table's column names, and all other lines contain values for the header columns. BigQuery case:

bigquery_destination pointing to a BigQuery project must be set. In the given project a new dataset will be created with name

export_data_<automl-dataset-display-name>_<timestamp-of-export-call> where will be made BigQuery-dataset-name compatible (e.g. most special characters will become underscores), and timestamp will be in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In that dataset a new table called primary_table will be created, and filled with precisely the same data as this obtained on import.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

PredictRequest

Request message for PredictionService.Predict.

ParamsEntry

The abstract base class for a message.

PredictResponse

Response message for PredictionService.Predict.

MetadataEntry

The abstract base class for a message.

RegressionEvaluationMetrics

Metrics for regression problems.

Row

A representation of a row in a relational table.

StringStats

The data statistics of a series of STRING values.

UnigramStats

The statistics of a unigram.

StructStats

The data statistics of a series of STRUCT values.

FieldStatsEntry

The abstract base class for a message.

StructType

StructType defines the DataType-s of a STRUCT type.

FieldsEntry

The abstract base class for a message.

TableSpec

A specification of a relational table. The table's schema is represented via its child column specs. It is pre-populated as part of ImportData by schema inference algorithm, the version of which is a required parameter of ImportData InputConfig. Note: While working with a table, at times the schema may be inconsistent with the data in the table (e.g. string in a FLOAT64 column). The consistency validation is done upon creation of a model. Used by:

  • Tables

TablesAnnotation

Contains annotation details specific to Tables.

TablesDatasetMetadata

Metadata for a dataset used for AutoML Tables.

TargetColumnCorrelationsEntry

The abstract base class for a message.

TablesModelColumnInfo

An information specific to given column and Tables Model, in context of the Model and the predictions created by it.

TablesModelMetadata

Model metadata specific to AutoML Tables.

This message has oneof_ fields (mutually exclusive fields). For each oneof, at most one member field can be set at the same time. Setting any member of the oneof automatically clears all other members.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

TextClassificationDatasetMetadata

Dataset metadata for classification.

TextClassificationModelMetadata

Model metadata that is specific to text classification.

TextExtractionAnnotation

Annotation for identifying spans of text.

.. _oneof: https://proto-plus-python.readthedocs.io/en/stable/fields.html#oneofs-mutually-exclusive-fields

TextExtractionDatasetMetadata

Dataset metadata that is specific to text extraction

TextExtractionEvaluationMetrics

Model evaluation metrics for text extraction problems.

ConfidenceMetricsEntry

Metrics for a single confidence threshold.

TextExtractionModelMetadata

Model metadata that is specific to text extraction.

TextSegment

A contiguous part of a text (string), assuming it has an UTF-8 NFC encoding.

TextSentimentAnnotation

Contains annotation details specific to text sentiment.

TextSentimentDatasetMetadata

Dataset metadata for text sentiment.

TextSentimentEvaluationMetrics

Model evaluation metrics for text sentiment problems.

TextSentimentModelMetadata

Model metadata that is specific to text sentiment.

TextSnippet

A representation of a text snippet.

TimeSegment

A time period inside of an example that has a time dimension (e.g. video).

TimestampStats

The data statistics of a series of TIMESTAMP values.

GranularStats

Stats split by a defined in context granularity.

BucketsEntry

The abstract base class for a message.

GranularStatsEntry

The abstract base class for a message.

TranslationAnnotation

Annotation details specific to translation.

TranslationDatasetMetadata

Dataset metadata that is specific to translation.

TranslationEvaluationMetrics

Evaluation metrics for the dataset.

TranslationModelMetadata

Model metadata that is specific to translation.

TypeCode

TypeCode is used as a part of DataType.

    <xref uid="google.cloud.automl.v1beta1.DataType.list_element_type">list_element_type</xref>.
STRUCT (9):
    Encoded as `struct`, where field values are represented
    according to
    <xref uid="google.cloud.automl.v1beta1.DataType.struct_type">struct_type</xref>.
CATEGORY (10):
    Values of this type are not further understood by AutoML,
    e.g. AutoML is unable to tell the order of values (as it
    could with FLOAT64), or is unable to say if one value
    contains another (as it could with STRING). Encoded as
    `string` (bytes should be base64-encoded, as described in
    RFC 4648, section 4).

UndeployModelOperationMetadata

Details of UndeployModel operation.

UndeployModelRequest

Request message for AutoMl.UndeployModel.

UpdateColumnSpecRequest

Request message for AutoMl.UpdateColumnSpec

UpdateDatasetRequest

Request message for AutoMl.UpdateDataset

UpdateTableSpecRequest

Request message for AutoMl.UpdateTableSpec

VideoClassificationAnnotation

Contains annotation details specific to video classification.

VideoClassificationDatasetMetadata

Dataset metadata specific to video classification. All Video Classification datasets are treated as multi label.

VideoClassificationModelMetadata

Model metadata specific to video classification.

VideoObjectTrackingAnnotation

Annotation details for video object tracking.

VideoObjectTrackingDatasetMetadata

Dataset metadata specific to video object tracking.

VideoObjectTrackingEvaluationMetrics

Model evaluation metrics for video object tracking problems. Evaluates prediction quality of both labeled bounding boxes and labeled tracks (i.e. series of bounding boxes sharing same label and instance ID).

VideoObjectTrackingModelMetadata

Model metadata specific to video object tracking.

Modules

pagers

API documentation for automl_v1.services.auto_ml.pagers module.

pagers

API documentation for automl_v1beta1.services.auto_ml.pagers module.

gcs_client

Wraps the Google Cloud Storage client library for use in tables helper.

tables_client

A tables helper for the google.cloud.automl_v1beta1 AutoML API