API documentation for automl_v1beta1.types
package.
Classes
AnnotationPayload
Contains annotation information that is relevant to AutoML.
AnnotationSpec
A definition of an annotation spec.
ArrayStats
The data statistics of a series of ARRAY values.
BatchPredictInputConfig
Input configuration for BatchPredict Action.
The format of input depends on the ML problem of the model used for prediction. As input source the gcs_source is expected, unless specified otherwise.
The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:
For Image Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png
For Image Object Detection: CSV file(s) with each line having just a single column: GCS_FILE_PATH which leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. This path is treated as the ID in the Batch predict output. Three sample rows: gs://folder/image1.jpeg gs://folder/image2.gif gs://folder/image3.png
For Video Classification: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,40 gs://folder/video1.mp4,20,60 gs://folder/vid2.mov,0,inf
For Video Object Tracking: CSV file(s) with each line in format: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END GCS_FILE_PATH leads to video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Three sample rows: gs://folder/video1.mp4,10,240 gs://folder/video1.mp4,300,360 gs://folder/vid2.mov,0,inf
For Text Classification: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 60,000 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf
For Text Sentiment: CSV file(s) with each line having just a single column: GCS_FILE_PATH | TEXT_SNIPPET Any given text file can have size upto 128kB. Any given text snippet content must have 500 characters or less. Three sample rows: gs://folder/text1.txt "Some text content to predict" gs://folder/text3.pdf Supported file extensions: .txt, .pdf
For Text Extraction .JSONL (i.e. JSON Lines) file(s) which either provide text in-line or as documents (for a single BatchPredict call only one of the these formats may be used). The in-line .JSONL file(s) contain per line a proto that wraps a temporary user-assigned TextSnippet ID (string up to 2000 characters long) called "id", a TextSnippet proto (in json representation) and zero or more TextFeature protos. Any given text snippet content must have 30,000 characters or less, and also be UTF-8 NFC encoded (ASCII already is). The IDs provided should be unique. The document .JSONL file(s) contain, per line, a proto that wraps a Document proto with input_config set. Only PDF documents are supported now, and each document must be up to 2MB large. Any given .JSONL file must be 100MB or smaller, and no more than 20 files may be given. Sample in-line JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n): { "id": "my_first_id", "text_snippet": { "content": "dog car cat"}, "text_features": [ { "text_segment": {"start_offset": 4, "end_offset": 6}, "structural_type": PARAGRAPH, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ] }, } ], }\n { "id": "2", "text_snippet": { "content": "An elaborate content", "mime_type": "text/plain" } } Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } }
For Tables: Either gcs_source or
bigquery_source. GCS case: CSV file(s), each by itself 10GB or smaller and total size must be 100GB or smaller, where first file must have a header containing column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns. The column names must contain the model's
[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
display_name-s (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows, i.e. the CSV lines, will be attempted. For FORECASTING
prediction_type: all columns having
TIME_SERIES_AVAILABLE_PAST_ONLY type will be ignored. First three sample rows of a CSV file: "First Name","Last Name","Dob","Addresses"
"John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
"Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]} BigQuery case: An URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller. The column names must contain the model's
[input_feature_column_specs'][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs]
display_name-s (order doesn't matter). The columns corresponding to the model's input feature column specs must contain values compatible with the column spec's data types. Prediction on all the rows of the table will be attempted. For FORECASTING
prediction_type: all columns having
TIME_SERIES_AVAILABLE_PAST_ONLY type will be ignored.
Definitions: GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/video.avi". TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within double quotes ("") TIME_SEGMENT_START = TIME_OFFSET Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_SEGMENT_END = TIME_OFFSET Expresses an end, exclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_OFFSET = A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed and it means the end of the example.
Errors: If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and prediction does not happen. Regardless of overall success or failure the per-row failures, up to a certain count cap, will be listed in Operation.metadata.partial_failures.
BatchPredictOperationMetadata
Details of BatchPredict operation.
BatchPredictOutputConfig
Output configuration for BatchPredict Action.
As destination the
gcs_destination must be set unless specified otherwise for a domain. If gcs_destination is set then in the given directory a new directory is created. Its name will be "prediction--", where timestamp is in YYYY-MM-DDThh:mm:ss.sssZ ISO-8601 format. The contents of it depends on the ML problem the predictions are made for. - For Image Classification: In the created directory filesimage_classification_1.jsonl
,
image_classification_2.jsonl
,...,\ image_classification_N.jsonl
will be created, where N may be 1, and depends on the total
number of the successfully predicted images and annotations. A
single image will be listed only once with all its annotations,
and its annotations will never be split across files. Each .JSONL
file will contain, per line, a JSON representation of a proto
that wraps image's "ID" : "<id_value>" followed by a list of zero
or more AnnotationPayload protos (called annotations), which have
classification detail populated. If prediction for any image
failed (partially or completely), then an additional
errors_1.jsonl
, errors_2.jsonl
,..., errors_N.jsonl
files will be created (N depends on total number of failed
predictions). These files will have a JSON representation of a
proto that wraps the same "ID" : "<id_value>" but here followed
by exactly one
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only code
and message
\ fields.
- For Image Object Detection: In the created directory files
image_object_detection_1.jsonl
,
image_object_detection_2.jsonl
,...,\ image_object_detection_N.jsonl
will be created, where N may be 1, and depends on the total
number of the successfully predicted images and annotations. Each
.JSONL file will contain, per line, a JSON representation of a
proto that wraps image's "ID" : "<id_value>" followed by a list
of zero or more AnnotationPayload protos (called annotations),
which have image_object_detection detail populated. A single
image will be listed only once with all its annotations, and its
annotations will never be split across files. If prediction for
any image failed (partially or completely), then additional
errors_1.jsonl
, errors_2.jsonl
,..., errors_N.jsonl
files will be created (N depends on total number of failed
predictions). These files will have a JSON representation of a
proto that wraps the same "ID" : "<id_value>" but here followed
by exactly one
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only code
and message
\ fields.
- For Video Classification: In the created directory a
video_classification.csv file, and a .JSON file per each video
classification requested in the input (i.e. each line in given
CSV(s)), will be created.
::
The format of video_classification.csv is:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1
to 1 the prediction input lines (i.e. video_classification.csv has
precisely the same number of lines as the prediction input had.)
JSON_FILE_NAME = Name of .JSON file in the output directory, which
contains prediction responses for the video time segment. STATUS =
"OK" if prediction completed successfully, or an error code with
message otherwise. If STATUS is not "OK" then the .JSON file for
that line may not exist or be empty.
::
Each .JSON file, assuming STATUS is "OK", will contain a list of
AnnotationPayload protos in JSON format, which are the predictions
for the video time segment the file is assigned to in the
video_classification.csv. All AnnotationPayload protos will have
video_classification field set, and will be sorted by
video_classification.type field (note that the returned types are
governed by classifaction_types
parameter in
[PredictService.BatchPredictRequest.params][]).
- For Video Object Tracking: In the created directory a
video_object_tracking.csv file will be created, and multiple
files video_object_trackinng_1.json,
video_object_trackinng_2.json,..., video_object_trackinng_N.json,
where N is the number of requests in the input (i.e. the number
of lines in given CSV(s)).
::
The format of video_object_tracking.csv is:
GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END,JSON_FILE_NAME,STATUS
where: GCS_FILE_PATH,TIME_SEGMENT_START,TIME_SEGMENT_END = matches 1
to 1 the prediction input lines (i.e. video_object_tracking.csv has
precisely the same number of lines as the prediction input had.)
JSON_FILE_NAME = Name of .JSON file in the output directory, which
contains prediction responses for the video time segment. STATUS =
"OK" if prediction completed successfully, or an error code with
message otherwise. If STATUS is not "OK" then the .JSON file for
that line may not exist or be empty.
::
Each .JSON file, assuming STATUS is "OK", will contain a list of
AnnotationPayload protos in JSON format, which are the predictions
for each frame of the video time segment the file is assigned to in
video_object_tracking.csv. All AnnotationPayload protos will have
video_object_tracking field set.
- For Text Classification: In the created directory files
text_classification_1.jsonl
,
text_classification_2.jsonl
,...,\ text_classification_N.jsonl
will be created, where N may be 1, and depends on the total
number of inputs and annotations found.
::
Each .JSONL file will contain, per line, a JSON representation of a
proto that wraps input text snippet or input text file and a list of
zero or more AnnotationPayload protos (called annotations), which
have classification detail populated. A single text snippet or file
will be listed only once with all its annotations, and its
annotations will never be split across files.
If prediction for any text snippet or file failed (partially or
completely), then additional errors_1.jsonl
, errors_2.jsonl
,...,
errors_N.jsonl
files will be created (N depends on total number of
failed predictions). These files will have a JSON representation of a
proto that wraps input text snippet or input text file followed by
exactly one
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only code
and message
.
- For Text Sentiment: In the created directory files
text_sentiment_1.jsonl
,
text_sentiment_2.jsonl
,...,\ text_sentiment_N.jsonl
will
be created, where N may be 1, and depends on the total number of
inputs and annotations found.
::
Each .JSONL file will contain, per line, a JSON representation of a
proto that wraps input text snippet or input text file and a list of
zero or more AnnotationPayload protos (called annotations), which
have text_sentiment detail populated. A single text snippet or file
will be listed only once with all its annotations, and its
annotations will never be split across files.
If prediction for any text snippet or file failed (partially or
completely), then additional errors_1.jsonl
, errors_2.jsonl
,...,
errors_N.jsonl
files will be created (N depends on total number of
failed predictions). These files will have a JSON representation of a
proto that wraps input text snippet or input text file followed by
exactly one
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only code
and message
.
- For Text Extraction: In the created directory files
text_extraction_1.jsonl
,
text_extraction_2.jsonl
,...,\ text_extraction_N.jsonl
will be created, where N may be 1, and depends on the total
number of inputs and annotations found. The contents of these
.JSONL file(s) depend on whether the input used inline text, or
documents. If input was inline, then each .JSONL file will
contain, per line, a JSON representation of a proto that wraps
given in request text snippet's "id" (if specified), followed by
input text snippet, and a list of zero or more AnnotationPayload
protos (called annotations), which have text_extraction detail
populated. A single text snippet will be listed only once with
all its annotations, and its annotations will never be split
across files. If input used documents, then each .JSONL file will
contain, per line, a JSON representation of a proto that wraps
given in request document proto, followed by its OCR-ed
representation in the form of a text snippet, finally followed by
a list of zero or more AnnotationPayload protos (called
annotations), which have text_extraction detail populated and
refer, via their indices, to the OCR-ed text snippet. A single
document (and its text snippet) will be listed only once with all
its annotations, and its annotations will never be split across
files. If prediction for any text snippet failed (partially or
completely), then additional errors_1.jsonl
,
errors_2.jsonl
,..., errors_N.jsonl
files will be created
(N depends on total number of failed predictions). These files
will have a JSON representation of a proto that wraps either the
"id" : "<id_value>" (in case of inline) or the document proto (in
case of document) but here followed by exactly one
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
containing only code
and message
.
- For Tables: Output depends on whether
gcs_destination
or
bigquery_destination
is set (either is allowed). GCS case: In the created directory files
tables_1.csv
, tables_2.csv
,..., tables_N.csv
will be
created, where N may be 1, and depends on the total number of the
successfully predicted rows. For all CLASSIFICATION
prediction_type-s:
Each .csv file will contain a header, listing all columns'
display_name-s
given on input followed by M target column names in the format of
"<target_column_specs
display_name>__score"
where M is the number of distinct target values, i.e. number of
distinct values in the target column of the table used to train the
model. Subsequent lines will contain the respective values of
successfully predicted rows, with the last, i.e. the target, columns
having the corresponding prediction
scores. For
REGRESSION and FORECASTING
prediction_type-s:
Each .csv file will contain a header, listing all columns'
display_name-s given on
input followed by the predicted target column with name in the
format of
"predicted_<target_column_specs
display_name>"
Subsequent lines will contain the respective values of successfully
predicted rows, with the last, i.e. the target, column having the
predicted target value. If prediction for any rows failed, then an
additional errors_1.csv
, errors_2.csv
,..., errors_N.csv
will be created (N depends on total number of failed rows). These
files will have analogous format as tables_*.csv
, but always
with a single target column having
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
represented as a JSON string, and containing only code
and
message
. BigQuery case:
bigquery_destination
pointing to a BigQuery project must be set. In the given project a
new dataset will be created with name
prediction_<model-display-name>_<timestamp-of-prediction-call>
where will be made BigQuery-dataset-name compatible (e.g. most
special characters will become underscores), and timestamp will be
in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the
dataset two tables will be created, predictions
, and errors
.
The predictions
table's column names will be the input columns'
display_name-s
followed by the target column with name in the format of
"predicted_<target_column_specs
display_name>"
The input feature columns will contain the respective values of
successfully predicted rows, with the target column having an ARRAY
of
AnnotationPayloads,
represented as STRUCT-s, containing
TablesAnnotation.
The errors
table contains rows for which the prediction has
failed, it has analogous input columns while the target column name
is in the format of
"errors_<target_column_specs
display_name>", and as a value has
[google.rpc.Status
](https:
//github.com/googleapis/googleapis/blob/master/google/rpc/status.proto)
represented as a STRUCT, and containing only code
and
message
.
BatchPredictRequest
Request message for PredictionService.BatchPredict.
BatchPredictResult
Result of the Batch Predict. This message is returned in
response][google.longrunning.Operation.response]
of the operation
returned by the
PredictionService.BatchPredict.
BigQueryDestination
The BigQuery location for the output content.
BigQuerySource
The BigQuery location for the input content.
BoundingBoxMetricsEntry
Bounding box matching model metrics for a single intersection-over-union threshold and multiple label match confidence thresholds.
BoundingPoly
A bounding polygon of a detected object on a plane. On output both vertices and normalized_vertices are provided. The polygon is formed by connecting vertices in the order they are listed.
CategoryStats
The data statistics of a series of CATEGORY values.
ClassificationAnnotation
Contains annotation details specific to classification.
ClassificationEvaluationMetrics
Model evaluation metrics for classification problems. Note: For Video Classification this metrics only describe quality of the Video Classification predictions of "segment_classification" type.
ColumnSpec
A representation of a column in a relational table. When listing them, column specs are returned in the same order in which they were given on import . Used by:
- Tables
CorrelationStats
A correlation statistics between two series of DataType values. The series may have differing DataType-s, but within a single series the DataType must be the same.
CreateDatasetRequest
Request message for AutoMl.CreateDataset.
CreateModelOperationMetadata
Details of CreateModel operation.
CreateModelRequest
Request message for AutoMl.CreateModel.
DataStats
The data statistics of a series of values that share the same DataType.
DataType
Indicated the type of data that can be stored in a structured data entity (e.g. a table).
Dataset
A workspace for solving a single, particular machine learning (ML) problem. A workspace contains examples that may be annotated.
DeleteDatasetRequest
Request message for AutoMl.DeleteDataset.
DeleteModelRequest
Request message for AutoMl.DeleteModel.
DeleteOperationMetadata
Details of operations that perform deletes of any entities.
DeployModelOperationMetadata
Details of DeployModel operation.
DeployModelRequest
Request message for AutoMl.DeployModel.
Document
A structured text document e.g. a PDF.
DocumentDimensions
Message that describes dimension of a document.
DocumentInputConfig
Input configuration of a Document.
DoubleRange
A range between two double numbers.
ExamplePayload
Example data used for training or prediction.
ExportDataOperationMetadata
Details of ExportData operation.
ExportDataRequest
Request message for AutoMl.ExportData.
ExportEvaluatedExamplesOperationMetadata
Details of EvaluatedExamples operation.
ExportEvaluatedExamplesOutputConfig
Output configuration for ExportEvaluatedExamples Action. Note that this call is available only for 30 days since the moment the model was evaluated. The output depends on the domain, as follows (note that only examples from the TEST set are exported):
- For Tables:
bigquery_destination pointing to a BigQuery project must be set. In the given project a new dataset will be created with name
export_evaluated_examples_<model-display-name>_<timestamp-of-export-call>
where will be made BigQuery-dataset-name compatible (e.g. most
special characters will become underscores), and timestamp will be
in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In the
dataset an evaluated_examples
table will be created. It will
have all the same columns as the
primary_table of the dataset from which the model was created, as they were at the moment of model's evaluation (this includes the target column with its ground truth), followed by a column called "predicted_<target_column>". That last column will contain the model's prediction result for each respective row, given as ARRAY of AnnotationPayloads, represented as STRUCT-s, containing TablesAnnotation.
ExportEvaluatedExamplesRequest
Request message for AutoMl.ExportEvaluatedExamples.
ExportModelOperationMetadata
Details of ExportModel operation.
ExportModelRequest
Request message for AutoMl.ExportModel. Models need to be enabled for exporting, otherwise an error code will be returned.
Float64Stats
The data statistics of a series of FLOAT64 values.
GcrDestination
The GCR location where the image must be pushed to.
GcsDestination
The Google Cloud Storage location where the output is to be written to.
GcsSource
The Google Cloud Storage location for the input content.
GetAnnotationSpecRequest
Request message for AutoMl.GetAnnotationSpec.
GetColumnSpecRequest
Request message for AutoMl.GetColumnSpec.
GetDatasetRequest
Request message for AutoMl.GetDataset.
GetModelEvaluationRequest
Request message for AutoMl.GetModelEvaluation.
GetModelRequest
Request message for AutoMl.GetModel.
GetTableSpecRequest
Request message for AutoMl.GetTableSpec.
Image
A representation of an image. Only images up to 30MB in size are supported.
ImageClassificationDatasetMetadata
Dataset metadata that is specific to image classification.
ImageClassificationModelDeploymentMetadata
Model deployment metadata specific to Image Classification.
ImageClassificationModelMetadata
Model metadata for image classification.
ImageObjectDetectionAnnotation
Annotation details for image object detection.
ImageObjectDetectionDatasetMetadata
Dataset metadata specific to image object detection.
ImageObjectDetectionEvaluationMetrics
Model evaluation metrics for image object detection problems. Evaluates prediction quality of labeled bounding boxes.
ImageObjectDetectionModelDeploymentMetadata
Model deployment metadata specific to Image Object Detection.
ImageObjectDetectionModelMetadata
Model metadata specific to image object detection.
ImportDataOperationMetadata
Details of ImportData operation.
ImportDataRequest
Request message for AutoMl.ImportData.
InputConfig
Input configuration for ImportData Action.
The format of input depends on dataset_metadata the Dataset into which the import is happening has. As input source the gcs_source is expected, unless specified otherwise. Additionally any input .CSV file by itself must be 100MB or smaller, unless specified otherwise. If an "example" file (that is, image, video etc.) with identical content (even if it had different GCS_FILE_PATH) is mentioned multiple times, then its label, bounding boxes etc. are appended. The same file should be always provided with the same ML_USE and GCS_FILE_PATH, if it is not, then these values are nondeterministically selected from the given ones.
The formats are represented in EBNF with commas being literal and with non-terminal symbols defined near the end of this comment. The formats are:
For Image Classification: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,LABEL,LABEL,... GCS_FILE_PATH leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG, .WEBP, .BMP, .TIFF, .ICO For MULTICLASS classification type, at most one LABEL is allowed per image. If an image has not yet been labeled, then it should be mentioned just once with no LABEL. Some sample rows: TRAIN,gs://folder/image1.jpg,daisy TEST,gs://folder/image2.jpg,dandelion,tulip,rose UNASSIGNED,gs://folder/image3.jpg,daisy UNASSIGNED,gs://folder/image4.jpg
For Image Object Detection: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH,(LABEL,BOUNDING_BOX | ,,,,,,,) GCS_FILE_PATH leads to image of up to 30MB in size. Supported extensions: .JPEG, .GIF, .PNG. Each image is assumed to be exhaustively labeled. The minimum allowed BOUNDING_BOX edge length is 0.01, and no more than 500 BOUNDING_BOX-es per image are allowed (one BOUNDING_BOX is defined per line). If an image has not yet been labeled, then it should be mentioned just once with no LABEL and the ",,,,,,," in place of the BOUNDING_BOX. For images which are known to not contain any bounding boxes, they should be labelled explictly as "NEGATIVE_IMAGE", followed by ",,,,,,," in place of the BOUNDING_BOX. Sample rows: TRAIN,gs://folder/image1.png,car,0.1,0.1,,,0.3,0.3,, TRAIN,gs://folder/image1.png,bike,.7,.6,,,.8,.9,, UNASSIGNED,gs://folder/im2.png,car,0.1,0.1,0.2,0.1,0.2,0.3,0.1,0.3 TEST,gs://folder/im3.png,,,,,,,,, TRAIN,gs://folder/im4.png,NEGATIVE_IMAGE,,,,,,,,,
For Video Classification: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH should lead to another .csv file which describes examples that have given ML_USE, using the following row format: GCS_FILE_PATH,(LABEL,TIME_SEGMENT_START,TIME_SEGMENT_END | ,,) Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. TIME_SEGMENT_START and TIME_SEGMENT_END must be within the length of the video, and end has to be after the start. Any segment of a video which has one or more labels on it, is considered a hard negative for all other labels. Any segment with no labels on it is considered to be unknown. If a whole video is unknown, then it shuold be mentioned just once with ",," in place of LABEL, TIME_SEGMENT_START,TIME_SEGMENT_END. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,120,180.000021 gs://folder/video1.avi,bike,150,180.000021 gs://folder/vid2.avi,car,0,60.5 gs://folder/vid3.avi,,,
For Video Object Tracking: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH where ML_USE VALIDATE value should not be used. The GCS_FILE_PATH should lead to another .csv file which describes examples that have given ML_USE, using one of the following row format: GCS_FILE_PATH,LABEL,[INSTANCE_ID],TIMESTAMP,BOUNDING_BOX or GCS_FILE_PATH,,,,,,,,,, Here GCS_FILE_PATH leads to a video of up to 50GB in size and up to 3h duration. Supported extensions: .MOV, .MPEG4, .MP4, .AVI. Providing INSTANCE_IDs can help to obtain a better model. When a specific labeled entity leaves the video frame, and shows up afterwards it is not required, albeit preferable, that the same INSTANCE_ID is given to it. TIMESTAMP must be within the length of the video, the BOUNDING_BOX is assumed to be drawn on the closest video's frame to the TIMESTAMP. Any mentioned by the TIMESTAMP frame is expected to be exhaustively labeled and no more than 500 BOUNDING_BOX-es per frame are allowed. If a whole video is unknown, then it should be mentioned just once with ",,,,,,,,,," in place of LABEL, [INSTANCE_ID],TIMESTAMP,BOUNDING_BOX. Sample top level CSV file: TRAIN,gs://folder/train_videos.csv TEST,gs://folder/test_videos.csv UNASSIGNED,gs://folder/other_videos.csv Seven sample rows of a CSV file for a particular ML_USE: gs://folder/video1.avi,car,1,12.10,0.8,0.8,0.9,0.8,0.9,0.9,0.8,0.9 gs://folder/video1.avi,car,1,12.90,0.4,0.8,0.5,0.8,0.5,0.9,0.4,0.9 gs://folder/video1.avi,car,2,12.10,.4,.2,.5,.2,.5,.3,.4,.3 gs://folder/video1.avi,car,2,12.90,.8,.2,,,.9,.3,, gs://folder/video1.avi,bike,,12.50,.45,.45,,,.55,.55,, gs://folder/video2.avi,car,1,0,.1,.9,,,.9,.1,, gs://folder/video2.avi,,,,,,,,,,,
For Text Extraction: CSV file(s) with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .JSONL (that is, JSON Lines) file which either imports text in-line or as documents. Any given .JSONL file must be 100MB or smaller. The in-line .JSONL file contains, per line, a proto that wraps a TextSnippet proto (in json representation) followed by one or more AnnotationPayload protos (called annotations), which have display_name and text_extraction detail populated. The given text is expected to be annotated exhaustively, for example, if you look for animals and text contains "dolphin" that is not labeled, then "dolphin" is assumed to not be an animal. Any given text snippet content must be 10KB or smaller, and also be UTF-8 NFC encoded (ASCII already is). The document .JSONL file contains, per line, a proto that wraps a Document proto. The Document proto must have either document_text or input_config set. In document_text case, the Document proto may also contain the spatial information of the document, including layout, document dimension and page number. In input_config case, only PDF documents are supported now, and each document may be up to 2MB large. Currently, annotations on documents cannot be specified at import. Three sample CSV rows: TRAIN,gs://folder/file1.jsonl VALIDATE,gs://folder/file2.jsonl TEST,gs://folder/file3.jsonl Sample in-line JSON Lines file for entity extraction (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "document_text": {"content": "dog cat"} "layout": [ { "text_segment": { "start_offset": 0, "end_offset": 3, }, "page_number": 1, "bounding_poly": { "normalized_vertices": [ {"x": 0.1, "y": 0.1}, {"x": 0.1, "y": 0.3}, {"x": 0.3, "y": 0.3}, {"x": 0.3, "y": 0.1}, ], }, "text_segment_type": TOKEN, }, { "text_segment": { "start_offset": 4, "end_offset": 7, }, "page_number": 1, "bounding_poly": { "normalized_vertices": [ {"x": 0.4, "y": 0.1}, {"x": 0.4, "y": 0.3}, {"x": 0.8, "y": 0.3}, {"x": 0.8, "y": 0.1}, ], }, "text_segment_type": TOKEN, }
::
], "document_dimensions": { "width": 8.27, "height": 11.69, "unit": INCH, } "page_count": 1, }, "annotations": [ { "display_name": "animal", "text_extraction": {"text_segment": {"start_offset": 0, "end_offset": 3}} }, { "display_name": "animal", "text_extraction": {"text_segment": {"start_offset": 4, "end_offset": 7}} } ], }\n { "text_snippet": { "content": "This dog is good." }, "annotations": [ { "display_name": "animal", "text_extraction": { "text_segment": {"start_offset": 5, "end_offset": 8} } } ] }
Sample document JSON Lines file (presented here with artificial line breaks, but the only actual line break is denoted by \n).: { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document1.pdf" ] } } } }\n { "document": { "input_config": { "gcs_source": { "input_uris": [ "gs://folder/document2.pdf" ] } } } }
For Text Classification: CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),LABEL,LABEL,... TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid gcs file path, i.e. prefixed by "gs://", it will be treated as a GCS_FILE_PATH, else if the content is enclosed within double quotes (""), it is treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path must lead to a .txt file with UTF-8 encoding, for example, "gs://folder/content.txt", and the content in it is extracted as a text snippet. In TEXT_SNIPPET case, the column content excluding quotes is treated as to be imported text snippet. In both cases, the text snippet/file size must be within 128kB. Maximum 100 unique labels are allowed per CSV row. Sample rows: TRAIN,"They have bad food and very rude",RudeService,BadFood TRAIN,gs://folder/content.txt,SlowService TEST,"Typically always bad service there.",RudeService VALIDATE,"Stomach ache to go.",BadFood
For Text Sentiment: CSV file(s) with each line in format: ML_USE,(TEXT_SNIPPET | GCS_FILE_PATH),SENTIMENT TEXT_SNIPPET and GCS_FILE_PATH are distinguished by a pattern. If the column content is a valid gcs file path, that is, prefixed by "gs://", it is treated as a GCS_FILE_PATH, otherwise it is treated as a TEXT_SNIPPET. In the GCS_FILE_PATH case, the path must lead to a .txt file with UTF-8 encoding, for example, "gs://folder/content.txt", and the content in it is extracted as a text snippet. In TEXT_SNIPPET case, the column content itself is treated as to be imported text snippet. In both cases, the text snippet must be up to 500 characters long. Sample rows: TRAIN,"@freewrytin this is way too good for your product",2 TRAIN,"I need this product so bad",3 TEST,"Thank you for this product.",4 VALIDATE,gs://folder/content.txt,2
For Tables: Either gcs_source or
bigquery_source can be used. All inputs is concatenated into a single
primary_table For gcs_source: CSV file(s), where the first row of the first file is the header, containing unique column names. If the first row of a subsequent file is the same as the header, then it is also treated as a header. All other rows contain values for the corresponding columns. Each .CSV file by itself must be 10GB or smaller, and their total size must be 100GB or smaller. First three sample rows of a CSV file: "Id","First Name","Last Name","Dob","Addresses"
"1","John","Doe","1968-01-22","[{"status":"current","address":"123_First_Avenue","city":"Seattle","state":"WA","zip":"11111","numberOfYears":"1"},{"status":"previous","address":"456_Main_Street","city":"Portland","state":"OR","zip":"22222","numberOfYears":"5"}]"
"2","Jane","Doe","1980-10-16","[{"status":"current","address":"789_Any_Avenue","city":"Albany","state":"NY","zip":"33333","numberOfYears":"2"},{"status":"previous","address":"321_Main_Street","city":"Hoboken","state":"NJ","zip":"44444","numberOfYears":"3"}]} For bigquery_source: An URI of a BigQuery table. The user data size of the BigQuery table must be 100GB or smaller. An imported table must have between 2 and 1,000 columns, inclusive, and between 1000 and 100,000,000 rows, inclusive. There are at most 5 import data running in parallel. Definitions: ML_USE = "TRAIN" | "VALIDATE" | "TEST" | "UNASSIGNED" Describes how the given example (file) should be used for model training. "UNASSIGNED" can be used when user has no preference. GCS_FILE_PATH = A path to file on GCS, e.g. "gs://folder/image1.png". LABEL = A display name of an object on an image, video etc., e.g. "dog". Must be up to 32 characters long and can consist only of ASCII Latin letters A-Z and a-z, underscores(_), and ASCII digits 0-9. For each label an AnnotationSpec is created which display_name becomes the label; AnnotationSpecs are given back in predictions. INSTANCE_ID = A positive integer that identifies a specific instance of a labeled entity on an example. Used e.g. to track two cars on a video while being able to tell apart which one is which. BOUNDING_BOX = VERTEX,VERTEX,VERTEX,VERTEX | VERTEX,,,VERTEX,, A rectangle parallel to the frame of the example (image, video). If 4 vertices are given they are connected by edges in the order provided, if 2 are given they are recognized as diagonally opposite vertices of the rectangle. VERTEX = COORDINATE,COORDINATE First coordinate is horizontal (x), the second is vertical (y). COORDINATE = A float in 0 to 1 range, relative to total length of image or video in given dimension. For fractions the leading non-decimal 0 can be omitted (i.e. 0.3 = .3). Point 0,0 is in top left. TIME_SEGMENT_START = TIME_OFFSET Expresses a beginning, inclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_SEGMENT_END = TIME_OFFSET Expresses an end, exclusive, of a time segment within an example that has a time dimension (e.g. video). TIME_OFFSET = A number of seconds as measured from the start of an example (e.g. video). Fractions are allowed, up to a microsecond precision. "inf" is allowed, and it means the end of the example. TEXT_SNIPPET = A content of a text snippet, UTF-8 encoded, enclosed within double quotes (""). SENTIMENT = An integer between 0 and Dataset.text_sentiment_dataset_metadata.sentiment_max (inclusive). Describes the ordinal of the sentiment - higher value means a more positive sentiment. All the values are completely relative, i.e. neither 0 needs to mean a negative or neutral sentiment nor sentiment_max needs to mean a positive one - it is just required that 0 is the least positive sentiment in the data, and sentiment_max is the most positive one. The SENTIMENT shouldn't be confused with "score" or "magnitude" from the previous Natural Language Sentiment Analysis API. All SENTIMENT values between 0 and sentiment_max must be represented in the imported data. On prediction the same 0 to sentiment_max range will be used. The difference between neighboring sentiment values needs not to be uniform, e.g. 1 and 2 may be similar whereas the difference between 2 and 3 may be huge.
Errors: If any of the provided CSV files can't be parsed or if more than certain percent of CSV rows cannot be processed then the operation fails and nothing is imported. Regardless of overall success or failure the per-row failures, up to a certain count cap, is listed in Operation.metadata.partial_failures.
ListColumnSpecsRequest
Request message for AutoMl.ListColumnSpecs.
ListColumnSpecsResponse
Response message for AutoMl.ListColumnSpecs.
ListDatasetsRequest
Request message for AutoMl.ListDatasets.
ListDatasetsResponse
Response message for AutoMl.ListDatasets.
ListModelEvaluationsRequest
Request message for AutoMl.ListModelEvaluations.
ListModelEvaluationsResponse
Response message for AutoMl.ListModelEvaluations.
ListModelsRequest
Request message for AutoMl.ListModels.
ListModelsResponse
Response message for AutoMl.ListModels.
ListTableSpecsRequest
Request message for AutoMl.ListTableSpecs.
ListTableSpecsResponse
Response message for AutoMl.ListTableSpecs.
Model
API proto representing a trained machine learning model.
ModelEvaluation
Evaluation results of a model.
ModelExportOutputConfig
Output configuration for ModelExport Action.
NormalizedVertex
A vertex represents a 2D point in the image. The normalized vertex coordinates are between 0 to 1 fractions relative to the original plane (image, video). E.g. if the plane (e.g. whole image) would have size 10 x 20 then a point with normalized coordinates (0.1, 0.3) would be at the position (1, 6) on that plane.
OperationMetadata
Metadata used across all long running operations returned by AutoML API.
OutputConfig
For Translation: CSV file
translation.csv
, with each line in format: ML_USE,GCS_FILE_PATH GCS_FILE_PATH leads to a .TSV file which describes examples that have given ML_USE, using the following row format per line: TEXT_SNIPPET (in source language) \t TEXT_SNIPPET (in target language)- For Tables: Output depends on whether the dataset was imported from GCS or BigQuery. GCS case:
gcs_destination
must be set. Exported are CSV file(s) tables_1.csv
,
tables_2.csv
,...,\ tables_N.csv
with each having as header
line the table's column names, and all other lines contain values
for the header columns. BigQuery case:
bigquery_destination pointing to a BigQuery project must be set. In the given project a new dataset will be created with name
export_data_<automl-dataset-display-name>_<timestamp-of-export-call>
where will be made BigQuery-dataset-name compatible (e.g. most
special characters will become underscores), and timestamp will be
in YYYY_MM_DDThh_mm_ss_sssZ "based on ISO-8601" format. In that
dataset a new table called primary_table
will be created, and
filled with precisely the same data as this obtained on import.
PredictRequest
Request message for PredictionService.Predict.
PredictResponse
Response message for PredictionService.Predict.
RegressionEvaluationMetrics
Metrics for regression problems.
Row
A representation of a row in a relational table.
StringStats
The data statistics of a series of STRING values.
StructStats
The data statistics of a series of STRUCT values.
StructType
StructType
defines the DataType-s of a
STRUCT type.
TableSpec
A specification of a relational table. The table's schema is represented via its child column specs. It is pre-populated as part of ImportData by schema inference algorithm, the version of which is a required parameter of ImportData InputConfig. Note: While working with a table, at times the schema may be inconsistent with the data in the table (e.g. string in a FLOAT64 column). The consistency validation is done upon creation of a model. Used by:
- Tables
TablesAnnotation
Contains annotation details specific to Tables.
TablesDatasetMetadata
Metadata for a dataset used for AutoML Tables.
TablesModelColumnInfo
An information specific to given column and Tables Model, in context of the Model and the predictions created by it.
TablesModelMetadata
Model metadata specific to AutoML Tables.
TextClassificationDatasetMetadata
Dataset metadata for classification.
TextClassificationModelMetadata
Model metadata that is specific to text classification.
TextExtractionAnnotation
Annotation for identifying spans of text.
TextExtractionDatasetMetadata
Dataset metadata that is specific to text extraction
TextExtractionEvaluationMetrics
Model evaluation metrics for text extraction problems.
TextExtractionModelMetadata
Model metadata that is specific to text extraction.
TextSegment
A contiguous part of a text (string), assuming it has an UTF-8 NFC encoding.
TextSentimentAnnotation
Contains annotation details specific to text sentiment.
TextSentimentDatasetMetadata
Dataset metadata for text sentiment.
TextSentimentEvaluationMetrics
Model evaluation metrics for text sentiment problems.
TextSentimentModelMetadata
Model metadata that is specific to text sentiment.
TextSnippet
A representation of a text snippet.
TimeSegment
A time period inside of an example that has a time dimension (e.g. video).
TimestampStats
The data statistics of a series of TIMESTAMP values.
TranslationAnnotation
Annotation details specific to translation.
TranslationDatasetMetadata
Dataset metadata that is specific to translation.
TranslationEvaluationMetrics
Evaluation metrics for the dataset.
TranslationModelMetadata
Model metadata that is specific to translation.
UndeployModelOperationMetadata
Details of UndeployModel operation.
UndeployModelRequest
Request message for AutoMl.UndeployModel.
UpdateColumnSpecRequest
Request message for AutoMl.UpdateColumnSpec
UpdateDatasetRequest
Request message for AutoMl.UpdateDataset
UpdateTableSpecRequest
Request message for AutoMl.UpdateTableSpec
VideoClassificationAnnotation
Contains annotation details specific to video classification.
VideoClassificationDatasetMetadata
Dataset metadata specific to video classification. All Video Classification datasets are treated as multi label.
VideoClassificationModelMetadata
Model metadata specific to video classification.
VideoObjectTrackingAnnotation
Annotation details for video object tracking.
VideoObjectTrackingDatasetMetadata
Dataset metadata specific to video object tracking.
VideoObjectTrackingEvaluationMetrics
Model evaluation metrics for video object tracking problems. Evaluates prediction quality of both labeled bounding boxes and labeled tracks (i.e. series of bounding boxes sharing same label and instance ID).
VideoObjectTrackingModelMetadata
Model metadata specific to video object tracking.