Class AutoMlClient (0.10.0)

AutoMlClient(
    transport=None,
    channel=None,
    credentials=None,
    client_config=None,
    client_info=None,
    client_options=None,
)

AutoML Server API.

The resource names are assigned by the server. The server never reuses names that it has created after the resources with those names are deleted.

An ID of a resource is the last element of the item's resource name. For projects/{project_id}/locations/{location_id}/datasets/{dataset_id}, then the id for the item is {dataset_id}.

Currently the only supported location_id is "us-central1".

On any input that is documented to expect a string parameter in snake_case or kebab-case, either of those cases is accepted.

Methods

AutoMlClient

AutoMlClient(
    transport=None,
    channel=None,
    credentials=None,
    client_config=None,
    client_info=None,
    client_options=None,
)

Constructor.

Parameters
NameDescription
channel grpc.Channel

DEPRECATED. A Channel instance through which to make calls. This argument is mutually exclusive with credentials; providing both will raise an exception.

credentials google.auth.credentials.Credentials

The authorization credentials to attach to requests. These credentials identify this application to the service. If none are specified, the client will attempt to ascertain the credentials from the environment. This argument is mutually exclusive with providing a transport instance to transport; doing so will raise an exception.

client_config dict

DEPRECATED. A dictionary of call options for each method. If not specified, the default configuration is used.

client_info google.api_core.gapic_v1.client_info.ClientInfo

The client info used to send a user-agent string along with API requests. If None, then default info will be used. Generally, you only need to set this if you're developing your own client library.

client_options Union[dict, google.api_core.client_options.ClientOptions]

Client options used to set user options on the client. API Endpoint should be set through client_options.

annotation_spec_path

annotation_spec_path(project, location, dataset, annotation_spec)

Return a fully-qualified annotation_spec string.

create_dataset

create_dataset(parent, dataset, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Creates a dataset.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

parent = client.location_path('[PROJECT]', '[LOCATION]')

TODO: Initialize dataset:

dataset = {}

response = client.create_dataset(parent, dataset)

def callback(operation_future): ... # Handle result. ... result = operation_future.result()

response.add_done_callback(callback)

Handle metadata.

metadata = response.metadata()

Parameters
NameDescription
parent str

The resource name of the project to create the dataset for.

dataset Union[dict, Dataset]

The dataset to create. If a dict is provided, it must be of the same form as the protobuf message Dataset

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

create_model

create_model(parent, model, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Creates a model. Returns a Model in the response field when it completes. When you create a model, several model evaluations are created for it: a global evaluation, and one evaluation for each annotation spec.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

parent = client.location_path('[PROJECT]', '[LOCATION]')

TODO: Initialize model:

model = {}

response = client.create_model(parent, model)

def callback(operation_future): ... # Handle result. ... result = operation_future.result()

response.add_done_callback(callback)

Handle metadata.

metadata = response.metadata()

Parameters
NameDescription
parent str

Resource name of the parent project where the model is being created.

model Union[dict, Model]

The model to create. If a dict is provided, it must be of the same form as the protobuf message Model

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

dataset_path

dataset_path(project, location, dataset)

Return a fully-qualified dataset string.

delete_dataset

delete_dataset(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Deletes a dataset and all of its contents. Returns empty response in the response field when it completes, and delete_details in the metadata field.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

name = client.dataset_path('[PROJECT]', '[LOCATION]', '[DATASET]')

response = client.delete_dataset(name)

def callback(operation_future): ... # Handle result. ... result = operation_future.result()

response.add_done_callback(callback)

Handle metadata.

metadata = response.metadata()

Parameters
NameDescription
name str

The resource name of the dataset to delete.

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

delete_model

delete_model(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Deletes a model. Returns google.protobuf.Empty in the response field when it completes, and delete_details in the metadata field.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

name = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')

response = client.delete_model(name)

def callback(operation_future): ... # Handle result. ... result = operation_future.result()

response.add_done_callback(callback)

Handle metadata.

metadata = response.metadata()

Parameters
NameDescription
name str

Resource name of the model being deleted.

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

deploy_model

deploy_model(name, image_object_detection_model_deployment_metadata=None, image_classification_model_deployment_metadata=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Deploys a model. If a model is already deployed, deploying it with the same parameters has no effect. Deploying with different parametrs (as e.g. changing

node_number) will reset the deployment state without pausing the model's availability.

Only applicable for Text Classification, Image Object Detection; all other domains manage deployment automatically.

Returns an empty response in the response field when it completes.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

name = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')

response = client.deploy_model(name)

def callback(operation_future): ... # Handle result. ... result = operation_future.result()

response.add_done_callback(callback)

Handle metadata.

metadata = response.metadata()

Parameters
NameDescription
name str

Resource name of the model to deploy.

image_object_detection_model_deployment_metadata Union[dict, ImageObjectDetectionModelDeploymentMetadata]

Model deployment metadata specific to Image Object Detection. If a dict is provided, it must be of the same form as the protobuf message ImageObjectDetectionModelDeploymentMetadata

image_classification_model_deployment_metadata Union[dict, ImageClassificationModelDeploymentMetadata]

Model deployment metadata specific to Image Classification. If a dict is provided, it must be of the same form as the protobuf message ImageClassificationModelDeploymentMetadata

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

export_data

export_data(name, output_config, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Exports dataset's data to the provided output location. Returns an empty response in the response field when it completes.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

name = client.dataset_path('[PROJECT]', '[LOCATION]', '[DATASET]')

TODO: Initialize output_config:

output_config = {}

response = client.export_data(name, output_config)

def callback(operation_future): ... # Handle result. ... result = operation_future.result()

response.add_done_callback(callback)

Handle metadata.

metadata = response.metadata()

Parameters
NameDescription
name str

Required. The resource name of the dataset.

output_config Union[dict, OutputConfig]

Required. The desired output location. If a dict is provided, it must be of the same form as the protobuf message OutputConfig

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

export_model

export_model(name, output_config, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Exports a trained, "export-able", model to a user specified Google Cloud Storage location. A model is considered export-able if and only if it has an export format defined for it in ModelExportOutputConfig.

Returns an empty response in the response field when it completes.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

name = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')

TODO: Initialize output_config:

output_config = {}

response = client.export_model(name, output_config)

def callback(operation_future): ... # Handle result. ... result = operation_future.result()

response.add_done_callback(callback)

Handle metadata.

metadata = response.metadata()

Parameters
NameDescription
name str

Required. The resource name of the model to export.

output_config Union[dict, ModelExportOutputConfig]

Required. The desired output location and configuration. If a dict is provided, it must be of the same form as the protobuf message ModelExportOutputConfig

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

from_service_account_file

from_service_account_file(filename, *args, **kwargs)

Creates an instance of this client using the provided credentials file.

Parameter
NameDescription
filename str

The path to the service account private key json file.

Returns
TypeDescription
AutoMlClientThe constructed client.

from_service_account_json

from_service_account_json(filename, *args, **kwargs)

Creates an instance of this client using the provided credentials file.

Parameter
NameDescription
filename str

The path to the service account private key json file.

Returns
TypeDescription
AutoMlClientThe constructed client.

get_annotation_spec

get_annotation_spec(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Gets an annotation spec.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

name = client.annotation_spec_path('[PROJECT]', '[LOCATION]', '[DATASET]', '[ANNOTATION_SPEC]')

response = client.get_annotation_spec(name)

Parameters
NameDescription
name str

The resource name of the annotation spec to retrieve.

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

get_dataset

get_dataset(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Gets a dataset.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

name = client.dataset_path('[PROJECT]', '[LOCATION]', '[DATASET]')

response = client.get_dataset(name)

Parameters
NameDescription
name str

The resource name of the dataset to retrieve.

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

get_model

get_model(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Gets a model.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

name = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')

response = client.get_model(name)

Parameters
NameDescription
name str

Resource name of the model.

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

get_model_evaluation

get_model_evaluation(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Gets a model evaluation.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

name = client.model_evaluation_path('[PROJECT]', '[LOCATION]', '[MODEL]', '[MODEL_EVALUATION]')

response = client.get_model_evaluation(name)

Parameters
NameDescription
name str

Resource name for the model evaluation.

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

import_data

import_data(name, input_config, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Imports data into a dataset.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

name = client.dataset_path('[PROJECT]', '[LOCATION]', '[DATASET]')

TODO: Initialize input_config:

input_config = {}

response = client.import_data(name, input_config)

def callback(operation_future): ... # Handle result. ... result = operation_future.result()

response.add_done_callback(callback)

Handle metadata.

metadata = response.metadata()

Parameters
NameDescription
name str

Required. Dataset name. Dataset must already exist. All imported annotations and examples will be added.

input_config Union[dict, InputConfig]

Required. The desired input location and its domain specific semantics, if any. If a dict is provided, it must be of the same form as the protobuf message InputConfig

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

list_datasets

list_datasets(parent, filter_=None, page_size=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Lists datasets in a project.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

parent = client.location_path('[PROJECT]', '[LOCATION]')

Iterate over all results

for element in client.list_datasets(parent): ... # process element ... pass

Alternatively:

Iterate over results one page at a time

for page in client.list_datasets(parent).pages: ... for element in page: ... # process element ... pass

Parameters
NameDescription
parent str

The resource name of the project from which to list datasets.

filter_ str

An expression for filtering the results of the request. - dataset_metadata - for existence of the case (e.g. image_classification_dataset_metadata:*). Some examples of using the filter are: - translation_dataset_metadata:* --> The dataset has translation_dataset_metadata.

page_size int

The maximum number of resources contained in the underlying API response. If page streaming is performed per- resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page.

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

list_model_evaluations

list_model_evaluations(parent, filter_, page_size=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Lists model evaluations.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

parent = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')

TODO: Initialize filter_:

filter_ = ''

Iterate over all results

for element in client.list_model_evaluations(parent, filter_): ... # process element ... pass

Alternatively:

Iterate over results one page at a time

for page in client.list_model_evaluations(parent, filter_).pages: ... for element in page: ... # process element ... pass

Parameters
NameDescription
parent str

Resource name of the model to list the model evaluations for. If modelId is set as "-", this will list model evaluations from across all models of the parent location.

filter_ str

An expression for filtering the results of the request. - annotation_spec_id - for =, != or existence. See example below for the last. Some examples of using the filter are: - annotation_spec_id!=4 --> The model evaluation was done for annotation spec with ID different than 4. - NOT annotation_spec_id:* --> The model evaluation was done for aggregate of all annotation specs.

page_size int

The maximum number of resources contained in the underlying API response. If page streaming is performed per- resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page.

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

list_models

list_models(parent, filter_=None, page_size=None, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Lists models.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

parent = client.location_path('[PROJECT]', '[LOCATION]')

Iterate over all results

for element in client.list_models(parent): ... # process element ... pass

Alternatively:

Iterate over results one page at a time

for page in client.list_models(parent).pages: ... for element in page: ... # process element ... pass

Parameters
NameDescription
parent str

Resource name of the project, from which to list the models.

filter_ str

An expression for filtering the results of the request. - model_metadata - for existence of the case (e.g. image_classification_model_metadata:*). - dataset_id - for = or !=. Some examples of using the filter are: - image_classification_model_metadata:* --> The model has image_classification_model_metadata. - dataset_id=5 --> The model was created from a dataset with ID 5.

page_size int

The maximum number of resources contained in the underlying API response. If page streaming is performed per- resource, this parameter does not affect the return value. If page streaming is performed per-page, this determines the maximum number of resources in a page.

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

location_path

location_path(project, location)

Return a fully-qualified location string.

model_evaluation_path

model_evaluation_path(project, location, model, model_evaluation)

Return a fully-qualified model_evaluation string.

model_path

model_path(project, location, model)

Return a fully-qualified model string.

undeploy_model

undeploy_model(name, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Undeploys a model. If the model is not deployed this method has no effect.

Only applicable for Text Classification, Image Object Detection; all other domains manage deployment automatically.

Returns an empty response in the response field when it completes.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

name = client.model_path('[PROJECT]', '[LOCATION]', '[MODEL]')

response = client.undeploy_model(name)

def callback(operation_future): ... # Handle result. ... result = operation_future.result()

response.add_done_callback(callback)

Handle metadata.

metadata = response.metadata()

Parameters
NameDescription
name str

Resource name of the model to undeploy.

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

update_dataset

update_dataset(dataset, update_mask, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Updates a dataset.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

TODO: Initialize dataset:

dataset = {}

TODO: Initialize update_mask:

update_mask = {}

response = client.update_dataset(dataset, update_mask)

Parameters
NameDescription
dataset Union[dict, Dataset]

The dataset which replaces the resource on the server. If a dict is provided, it must be of the same form as the protobuf message Dataset

update_mask Union[dict, FieldMask]

Required. The update mask applies to the resource. If a dict is provided, it must be of the same form as the protobuf message FieldMask

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.

update_model

update_model(model, update_mask, retry=<_MethodDefault._DEFAULT_VALUE: <object object>>, timeout=<_MethodDefault._DEFAULT_VALUE: <object object>>, metadata=None)

Updates a model.

.. rubric:: Example

from google.cloud import automl_v1

client = automl_v1.AutoMlClient()

TODO: Initialize model:

model = {}

TODO: Initialize update_mask:

update_mask = {}

response = client.update_model(model, update_mask)

Parameters
NameDescription
model Union[dict, Model]

The model which replaces the resource on the server. If a dict is provided, it must be of the same form as the protobuf message Model

update_mask Union[dict, FieldMask]

Required. The update mask applies to the resource. If a dict is provided, it must be of the same form as the protobuf message FieldMask

retry Optional[google.api_core.retry.Retry]

A retry object used to retry requests. If None is specified, requests will be retried using a default configuration.

timeout Optional[float]

The amount of time, in seconds, to wait for the request to complete. Note that if retry is specified, the timeout applies to each individual attempt.

metadata Optional[Sequence[Tuple[str, str]]]

Additional metadata that is provided to the method.

Exceptions
TypeDescription
google.api_core.exceptions.GoogleAPICallErrorIf the request failed for any reason.
google.api_core.exceptions.RetryErrorIf the request failed due to a retryable error and retry attempts failed.
ValueErrorIf the parameters are invalid.