Class VideoDataset (1.67.0)

VideoDataset(
    dataset_name: str,
    project: typing.Optional[str] = None,
    location: typing.Optional[str] = None,
    credentials: typing.Optional[google.auth.credentials.Credentials] = None,
)

A managed video dataset resource for Vertex AI.

Use this class to work with a managed video dataset. To create a video dataset, you need a datasource in CSV format and a schema in YAML format. The CSV file and the schema are accessed in Cloud Storage buckets.

Use video data for the following objectives:

Classification. For more information, see Classification schema files. Action recognition. For more information, see Action recognition schema files. Object tracking. For more information, see Object tracking schema files. The following code shows you how to create and import a dataset to train a video classification model. The schema file you use depends on whether you use your video dataset for action classification, recognition, or object tracking.

my_dataset = aiplatform.VideoDataset.create(
    gcs_source=['gs://path/to/my/dataset.csv'],
    import_schema_uri=['gs://aip.schema.dataset.ioformat.video.classification.yaml']
)

Properties

create_time

Time this resource was created.

display_name

Display name of this resource.

encryption_spec

Customer-managed encryption key options for this Vertex AI resource.

If this is set, then all resources created by this Vertex AI resource will be encrypted with the provided encryption key.

gca_resource

The underlying resource proto representation.

labels

User-defined labels containing metadata about this resource.

Read more about labels at https://goo.gl/xmQnxf

metadata_schema_uri

The metadata schema uri of this dataset resource.

name

Name of this resource.

resource_name

Full qualified resource name.

update_time

Time this resource was last updated.

Methods

VideoDataset

VideoDataset(
    dataset_name: str,
    project: typing.Optional[str] = None,
    location: typing.Optional[str] = None,
    credentials: typing.Optional[google.auth.credentials.Credentials] = None,
)

Retrieves an existing managed dataset given a dataset name or ID.

Parameters
Name Description
dataset_name str

Required. A fully-qualified dataset resource name or dataset ID. Example: "projects/123/locations/us-central1/datasets/456" or "456" when project and location are initialized or passed.

project str

Optional project to retrieve dataset from. If not set, project set in aiplatform.init will be used.

location str

Optional location to retrieve dataset from. If not set, location set in aiplatform.init will be used.

credentials auth_credentials.Credentials

Custom credentials to use to retrieve this Dataset. Overrides credentials set in aiplatform.init.

create

create(
    display_name: typing.Optional[str] = None,
    gcs_source: typing.Optional[typing.Union[str, typing.Sequence[str]]] = None,
    import_schema_uri: typing.Optional[str] = None,
    data_item_labels: typing.Optional[typing.Dict] = None,
    project: typing.Optional[str] = None,
    location: typing.Optional[str] = None,
    credentials: typing.Optional[google.auth.credentials.Credentials] = None,
    request_metadata: typing.Optional[typing.Sequence[typing.Tuple[str, str]]] = (),
    labels: typing.Optional[typing.Dict[str, str]] = None,
    encryption_spec_key_name: typing.Optional[str] = None,
    sync: bool = True,
    create_request_timeout: typing.Optional[float] = None,
) -> google.cloud.aiplatform.datasets.video_dataset.VideoDataset

Creates a new video dataset.

Optionally imports data into the dataset when a source and import_schema_uri are passed in. The following is an example of how this method is used:

my_dataset = aiplatform.VideoDataset.create(
    gcs_source=['gs://path/to/my/dataset.csv'],
    import_schema_uri=['gs://aip.schema.dataset.ioformat.video.classification.yaml']
)
Parameters
Name Description
display_name str

Optional. The user-defined name of the dataset. The name must contain 128 or fewer UTF-8 characters.

gcs_source Union[str, Sequence[str]]

The URI to one or more Google Cloud Storage buckets that contain your datasets. For example, str: "gs://bucket/file.csv" or Sequence[str]: ["gs://bucket/file1.csv", "gs://bucket/file2.csv"].

import_schema_uri str

A URI for a YAML file stored in Cloud Storage that describes the import schema used to validate the dataset. The schema is an OpenAPI 3.0.2 Schema object.

data_item_labels Dict

Optional. A dictionary of label information. Each dictionary item contains a label and a label key. Each item in the dataset includes one dictionary of label information. If a data item is added or merged into a dataset, and that data item contains an image that's identical to an image that’s already in the dataset, then the data items are merged. If two identical labels are detected during the merge, each with a different label key, then one of the label and label key dictionary items is randomly chosen to be into the merged data item. Dataset items are compared using their binary data (bytes), not on their content. If annotation labels are referenced in a schema specified by the import_schema_url parameter, then the labels in the data_item_labels dictionary are overriden by the annotations.

project str

The name of the Google Cloud project to which this VideoDataset is uploaded. This overrides the project that was set by aiplatform.init.

location str

The Google Cloud region where this dataset is uploaded. This region overrides the region that was set by aiplatform.init.

credentials auth_credentials.Credentials

The credentials that are used to upload the VideoDataset. These credentials override the credentials set by aiplatform.init.

request_metadata Sequence[Tuple[str, str]]

Strings that contain metadata that's sent with the request.

labels Dict[str, str]

Optional. Labels with user-defined metadata to organize your Vertex AI Tensorboards. The maximum length of a key and of a value is 64 unicode characters. Labels and keys can contain only lowercase letters, numeric characters, underscores, and dashes. International characters are allowed. No more than 64 user labels can be associated with one Tensorboard (system labels are excluded). For more information and examples of using labels, see Using labels to organize Google Cloud Platform resources. System reserved label keys are prefixed with aiplatform.googleapis.com/ and are immutable.

encryption_spec_key_name Optional[str]

Optional. The Cloud KMS resource identifier of the customer managed encryption key that's used to protect the dataset. The format of the key is projects/my-project/locations/my-region/keyRings/my-kr/cryptoKeys/my-key. The key needs to be in the same region as where the compute resource is created. If encryption_spec_key_name is set, this VideoDataset and all of its sub-resources are secured by this key. This encryption_spec_key_name overrides the encryption_spec_key_name set by aiplatform.init.

sync bool

If true, the create method creates a video dataset synchronously. If false, the create mdthod creates a video dataset asynchronously.

create_request_timeout float

Optional. The number of seconds for the timeout of the create request.

Returns
Type Description
video_dataset (VideoDataset) An instantiated representation of the managed VideoDataset resource.

delete

delete(sync: bool = True) -> None

Deletes this Vertex AI resource. WARNING: This deletion is permanent.

export_data

export_data(output_dir: str) -> typing.Sequence[str]

Exports data to output dir to GCS.

Parameter
Name Description
output_dir str

Required. The Google Cloud Storage location where the output is to be written to. In the given directory a new directory will be created with name: export-data- where timestamp is in YYYYMMDDHHMMSS format. All export output will be written into that directory. Inside that directory, annotations with the same schema will be grouped into sub directories which are named with the corresponding annotations' schema title. Inside these sub directories, a schema.yaml will be created to describe the output format. If the uri doesn't end with '/', a '/' will be automatically appended. The directory is created if it doesn't exist.

Returns
Type Description
exported_files (Sequence[str]) All of the files that are exported in this export operation.

export_data_for_custom_training

export_data_for_custom_training(
    output_dir: str,
    annotation_filter: typing.Optional[str] = None,
    saved_query_id: typing.Optional[str] = None,
    annotation_schema_uri: typing.Optional[str] = None,
    split: typing.Optional[
        typing.Union[typing.Dict[str, str], typing.Dict[str, float]]
    ] = None,
) -> typing.Dict[str, typing.Any]

Exports data to output dir to GCS for custom training use case.

Example annotation_schema_uri (image classification): gs://google-cloud-aiplatform/schema/dataset/annotation/image_classification_1.0.0.yaml

Example split (filter split): { "training_filter": "labels.aiplatform.googleapis.com/ml_use=training", "validation_filter": "labels.aiplatform.googleapis.com/ml_use=validation", "test_filter": "labels.aiplatform.googleapis.com/ml_use=test", } Example split (fraction split): { "training_fraction": 0.7, "validation_fraction": 0.2, "test_fraction": 0.1, }

Parameters
Name Description
output_dir str

Required. The Google Cloud Storage location where the output is to be written to. In the given directory a new directory will be created with name: export-data- where timestamp is in YYYYMMDDHHMMSS format. All export output will be written into that directory. Inside that directory, annotations with the same schema will be grouped into sub directories which are named with the corresponding annotations' schema title. Inside these sub directories, a schema.yaml will be created to describe the output format. If the uri doesn't end with '/', a '/' will be automatically appended. The directory is created if it doesn't exist.

annotation_filter str

Optional. An expression for filtering what part of the Dataset is to be exported. Only Annotations that match this filter will be exported. The filter syntax is the same as in ListAnnotations][DatasetService.ListAnnotations].

saved_query_id str

Optional. The ID of a SavedQuery (annotation set) under this Dataset used for filtering Annotations for training. Only used for custom training data export use cases. Only applicable to Datasets that have SavedQueries. Only Annotations that are associated with this SavedQuery are used in respectively training. When used in conjunction with annotations_filter, the Annotations used for training are filtered by both saved_query_id and annotations_filter. Only one of saved_query_id and annotation_schema_uri should be specified as both of them represent the same thing: problem type.

annotation_schema_uri str

Optional. The Cloud Storage URI that points to a YAML file describing the annotation schema. The schema is defined as an OpenAPI 3.0.2 Schema Object. The schema files that can be used here are found in gs://google-cloud-aiplatform/schema/dataset/annotation/, note that the chosen schema must be consistent with metadata_schema_uri of this Dataset. Only used for custom training data export use cases. Only applicable if this Dataset that have DataItems and Annotations. Only Annotations that both match this schema and belong to DataItems not ignored by the split method are used in respectively training, validation or test role, depending on the role of the DataItem they are on. When used in conjunction with annotations_filter, the Annotations used for training are filtered by both annotations_filter and annotation_schema_uri.

split Union[Dict[str, str], Dict[str, float]]

The instructions how the export data should be split between the training, validation and test sets.

Returns
Type Description
export_data_response (Dict) Response message for DatasetService.ExportData in Dictionary format.

import_data

import_data(
    gcs_source: typing.Union[str, typing.Sequence[str]],
    import_schema_uri: str,
    data_item_labels: typing.Optional[typing.Dict] = None,
    sync: bool = True,
    import_request_timeout: typing.Optional[float] = None,
) -> google.cloud.aiplatform.datasets.dataset._Dataset

Upload data to existing managed dataset.

Returns
Type Description
dataset (Dataset) Instantiated representation of the managed dataset resource.

list

list(
    filter: typing.Optional[str] = None,
    order_by: typing.Optional[str] = None,
    project: typing.Optional[str] = None,
    location: typing.Optional[str] = None,
    credentials: typing.Optional[google.auth.credentials.Credentials] = None,
) -> typing.List[google.cloud.aiplatform.base.VertexAiResourceNoun]

List all instances of this Dataset resource.

Example Usage:

aiplatform.TabularDataset.list( filter='labels.my_key="my_value"', order_by='display_name' )

Parameters
Name Description
filter str

Optional. An expression for filtering the results of the request. For field names both snake_case and camelCase are supported.

order_by str

Optional. A comma-separated list of fields to order by, sorted in ascending order. Use "desc" after a field name for descending. Supported fields: display_name, create_time, update_time

project str

Optional. Project to retrieve list from. If not set, project set in aiplatform.init will be used.

location str

Optional. Location to retrieve list from. If not set, location set in aiplatform.init will be used.

credentials auth_credentials.Credentials

Optional. Custom credentials to use to retrieve list. Overrides credentials set in aiplatform.init.

to_dict

to_dict() -> typing.Dict[str, typing.Any]

Returns the resource proto as a dictionary.

update

update(
    *,
    display_name: typing.Optional[str] = None,
    labels: typing.Optional[typing.Dict[str, str]] = None,
    description: typing.Optional[str] = None,
    update_request_timeout: typing.Optional[float] = None
) -> google.cloud.aiplatform.datasets.dataset._Dataset

Update the dataset. Updatable fields:

  • display_name
  • description
  • labels
Parameters
Name Description
display_name str

Optional. The user-defined name of the Dataset. The name can be up to 128 characters long and can be consist of any UTF-8 characters.

labels Dict[str, str]

Optional. Labels with user-defined metadata to organize your Tensorboards. Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed. No more than 64 user labels can be associated with one Tensorboard (System labels are excluded). See https://goo.gl/xmQnxf for more information and examples of labels. System reserved label keys are prefixed with "aiplatform.googleapis.com/" and are immutable.

description str

Optional. The description of the Dataset.

update_request_timeout float

Optional. The timeout for the update request in seconds.

Returns
Type Description
dataset (Dataset) Updated dataset.

wait

wait()

Helper method that blocks until all futures are complete.