- 1.72.0 (latest)
- 1.71.1
- 1.70.0
- 1.69.0
- 1.68.0
- 1.67.1
- 1.66.0
- 1.65.0
- 1.63.0
- 1.62.0
- 1.60.0
- 1.59.0
- 1.58.0
- 1.57.0
- 1.56.0
- 1.55.0
- 1.54.1
- 1.53.0
- 1.52.0
- 1.51.0
- 1.50.0
- 1.49.0
- 1.48.0
- 1.47.0
- 1.46.0
- 1.45.0
- 1.44.0
- 1.43.0
- 1.39.0
- 1.38.1
- 1.37.0
- 1.36.4
- 1.35.0
- 1.34.0
- 1.33.1
- 1.32.0
- 1.31.1
- 1.30.1
- 1.29.0
- 1.28.1
- 1.27.1
- 1.26.1
- 1.25.0
- 1.24.1
- 1.23.0
- 1.22.1
- 1.21.0
- 1.20.0
- 1.19.1
- 1.18.3
- 1.17.1
- 1.16.1
- 1.15.1
- 1.14.0
- 1.13.1
- 1.12.1
- 1.11.0
- 1.10.0
- 1.9.0
- 1.8.1
- 1.7.1
- 1.6.2
- 1.5.0
- 1.4.3
- 1.3.0
- 1.2.0
- 1.1.1
- 1.0.1
- 0.9.0
- 0.8.0
- 0.7.1
- 0.6.0
- 0.5.1
- 0.4.0
- 0.3.1
Classes for working with language models.
Classes
ChatMessage
ChatMessage(content: str, author: str)
A chat message.
CountTokensResponse
CountTokensResponse(
total_tokens: int,
total_billable_characters: int,
_count_tokens_response: typing.Any,
)
The response from a count_tokens request. .. attribute:: total_tokens
The total number of tokens counted across all instances passed to the request.
:type: int
EvaluationClassificationMetric
EvaluationClassificationMetric(
label_name: typing.Optional[str] = None,
auPrc: typing.Optional[float] = None,
auRoc: typing.Optional[float] = None,
logLoss: typing.Optional[float] = None,
confidenceMetrics: typing.Optional[
typing.List[typing.Dict[str, typing.Any]]
] = None,
confusionMatrix: typing.Optional[typing.Dict[str, typing.Any]] = None,
)
The evaluation metric response for classification metrics.
Parameters | |
---|---|
Name | Description |
label_name |
str
Optional. The name of the label associated with the metrics. This is only returned when |
auPrc |
float
Optional. The area under the precision recall curve. |
auRoc |
float
Optional. The area under the receiver operating characteristic curve. |
logLoss |
float
Optional. Logarithmic loss. |
confidenceMetrics |
List[Dict[str, Any]]
Optional. This is only returned when |
confusionMatrix |
Dict[str, Any]
Optional. This is only returned when |
EvaluationMetric
EvaluationMetric(
bleu: typing.Optional[float] = None, rougeLSum: typing.Optional[float] = None
)
The evaluation metric response.
Parameters | |
---|---|
Name | Description |
bleu |
float
Optional. BLEU (Bilingual evauation understudy). Scores based on sacrebleu implementation. |
rougeLSum |
float
Optional. ROUGE-L (Longest Common Subsequence) scoring at summary level. |
EvaluationQuestionAnsweringSpec
EvaluationQuestionAnsweringSpec(
ground_truth_data: typing.Union[typing.List[str], str, pandas.DataFrame],
task_name: str = "question-answering",
)
Spec for question answering model evaluation tasks.
EvaluationTextClassificationSpec
EvaluationTextClassificationSpec(
ground_truth_data: typing.Union[typing.List[str], str, pandas.DataFrame],
target_column_name: str,
class_names: typing.List[str],
)
Spec for text classification model evaluation tasks.
Parameters | |
---|---|
Name | Description |
target_column_name |
str
Required. The label column in the dataset provided in |
class_names |
List[str]
Required. A list of all possible label names in your dataset. Required when task_name='text-classification'. |
EvaluationTextGenerationSpec
EvaluationTextGenerationSpec(
ground_truth_data: typing.Union[typing.List[str], str, pandas.DataFrame]
)
Spec for text generation model evaluation tasks.
EvaluationTextSummarizationSpec
EvaluationTextSummarizationSpec(
ground_truth_data: typing.Union[typing.List[str], str, pandas.DataFrame],
task_name: str = "summarization",
)
Spec for text summarization model evaluation tasks.
InputOutputTextPair
InputOutputTextPair(input_text: str, output_text: str)
InputOutputTextPair represents a pair of input and output texts.
TextEmbedding
TextEmbedding(
values: typing.List[float],
statistics: typing.Optional[
vertexai.language_models.TextEmbeddingStatistics
] = None,
_prediction_response: typing.Optional[
google.cloud.aiplatform.models.Prediction
] = None,
)
Text embedding vector and statistics.
TextEmbeddingInput
TextEmbeddingInput(
text: str,
task_type: typing.Optional[str] = None,
title: typing.Optional[str] = None,
)
Structural text embedding input.
TextGenerationResponse
TextGenerationResponse(text: str, _prediction_response: typing.Any, is_blocked: bool = False, errors: typing.Tuple[int] = (), safety_attributes: typing.Dict[str, float] = <factory>, grounding_metadata: typing.Optional[vertexai.language_models._language_models.GroundingMetadata] = None)
TextGenerationResponse represents a response of a language model. .. attribute:: text
The generated text
:type: str
TuningEvaluationSpec
TuningEvaluationSpec(
evaluation_data: typing.Optional[str] = None,
evaluation_interval: typing.Optional[int] = None,
enable_early_stopping: typing.Optional[bool] = None,
enable_checkpoint_selection: typing.Optional[bool] = None,
tensorboard: typing.Optional[
typing.Union[
google.cloud.aiplatform.tensorboard.tensorboard_resource.Tensorboard, str
]
] = None,
)
Specification for model evaluation to perform during tuning.