Melakukan streaming pesan dari Pub/Sub menggunakan Dataflow

Dataflow adalah layanan terkelola sepenuhnya untuk mengubah dan memperkaya data dalam mode streaming (real-time) dan batch dengan keandalan dan kualitas yang sama. Dataflow menyediakan lingkungan pengembangan pipeline yang disederhanakan menggunakan Apache Beam SDK, yang memiliki beragam rangkaian primitif analisis sesi dan jendela, serta ekosistem konektor sumber dan sink. Panduan memulai ini menunjukkan cara menggunakan Dataflow untuk:

  • Membaca pesan yang dipublikasikan ke topik Pub/Sub
  • Memisahkan (atau mengelompokkan) pesan menurut stempel waktu
  • Menulis pesan ke Cloud Storage

Panduan memulai ini memperkenalkan penggunaan Dataflow di Java dan Python. SQL juga didukung. Panduan memulai ini juga ditawarkan sebagai tutorial Google Cloud Skills Boost yang menawarkan kredensial sementara untuk memulai.

Anda juga dapat memulai dengan menggunakan template Dataflow berbasis UI jika tidak ingin melakukan pemrosesan data kustom.

Sebelum memulai

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. Install the Google Cloud CLI.
  3. To initialize the gcloud CLI, run the following command:

    gcloud init
  4. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  5. Make sure that billing is enabled for your Google Cloud project.

  6. Enable the Dataflow, Compute Engine, Cloud Logging, Cloud Storage, Google Cloud Storage JSON API, Pub/Sub, Resource Manager, and Cloud Scheduler APIs:

    gcloud services enable dataflow.googleapis.com  compute.googleapis.com  logging.googleapis.com  storage-component.googleapis.com  storage-api.googleapis.com  pubsub.googleapis.com  cloudresourcemanager.googleapis.com  cloudscheduler.googleapis.com
  7. Set up authentication:

    1. Create the service account:

      gcloud iam service-accounts create SERVICE_ACCOUNT_NAME

      Replace SERVICE_ACCOUNT_NAME with a name for the service account.

    2. Grant roles to the service account. Run the following command once for each of the following IAM roles: roles/dataflow.worker, roles/storage.objectAdmin, roles/pubsub.admin:

      gcloud projects add-iam-policy-binding PROJECT_ID --member="serviceAccount:SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com" --role=ROLE

      Replace the following:

      • SERVICE_ACCOUNT_NAME: the name of the service account
      • PROJECT_ID: the project ID where you created the service account
      • ROLE: the role to grant
    3. Grant the required role to the principal that will attach the service account to other resources.

      gcloud iam service-accounts add-iam-policy-binding SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com --member="user:USER_EMAIL" --role=roles/iam.serviceAccountUser

      Replace the following:

      • SERVICE_ACCOUNT_NAME: the name of the service account
      • PROJECT_ID: the project ID where you created the service account
      • USER_EMAIL: the email address for a Google Account
  8. Install the Google Cloud CLI.
  9. To initialize the gcloud CLI, run the following command:

    gcloud init
  10. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  11. Make sure that billing is enabled for your Google Cloud project.

  12. Enable the Dataflow, Compute Engine, Cloud Logging, Cloud Storage, Google Cloud Storage JSON API, Pub/Sub, Resource Manager, and Cloud Scheduler APIs:

    gcloud services enable dataflow.googleapis.com  compute.googleapis.com  logging.googleapis.com  storage-component.googleapis.com  storage-api.googleapis.com  pubsub.googleapis.com  cloudresourcemanager.googleapis.com  cloudscheduler.googleapis.com
  13. Set up authentication:

    1. Create the service account:

      gcloud iam service-accounts create SERVICE_ACCOUNT_NAME

      Replace SERVICE_ACCOUNT_NAME with a name for the service account.

    2. Grant roles to the service account. Run the following command once for each of the following IAM roles: roles/dataflow.worker, roles/storage.objectAdmin, roles/pubsub.admin:

      gcloud projects add-iam-policy-binding PROJECT_ID --member="serviceAccount:SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com" --role=ROLE

      Replace the following:

      • SERVICE_ACCOUNT_NAME: the name of the service account
      • PROJECT_ID: the project ID where you created the service account
      • ROLE: the role to grant
    3. Grant the required role to the principal that will attach the service account to other resources.

      gcloud iam service-accounts add-iam-policy-binding SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com --member="user:USER_EMAIL" --role=roles/iam.serviceAccountUser

      Replace the following:

      • SERVICE_ACCOUNT_NAME: the name of the service account
      • PROJECT_ID: the project ID where you created the service account
      • USER_EMAIL: the email address for a Google Account
  14. Create local authentication credentials for your user account:

    gcloud auth application-default login

Menyiapkan project Pub/Sub

  1. Buat variabel untuk bucket, project, dan region Anda. Nama bucket Cloud Storage harus unik secara global. Pilih region Dataflow yang dekat dengan tempat Anda menjalankan perintah dalam panduan memulai ini. Nilai variabel REGION harus berupa nama wilayah yang valid. Untuk mengetahui informasi selengkapnya tentang region dan lokasi, lihat Lokasi Dataflow.

    BUCKET_NAME=BUCKET_NAME
    PROJECT_ID=$(gcloud config get-value project)
    TOPIC_ID=TOPIC_ID
    REGION=DATAFLOW_REGION
    SERVICE_ACCOUNT=SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com
  2. Buat bucket Cloud Storage yang dimiliki oleh project ini:

    gcloud storage buckets create gs://$BUCKET_NAME
  3. Buat topik Pub/Sub di project ini:

    gcloud pubsub topics create $TOPIC_ID
  4. Buat tugas Cloud Scheduler di project ini. Tugas memublikasikan pesan ke topik Pub/Sub dengan interval satu menit.

    Jika aplikasi App Engine tidak ada untuk project, langkah ini akan membuatnya.

    gcloud scheduler jobs create pubsub publisher-job --schedule="* * * * *" \
        --topic=$TOPIC_ID --message-body="Hello!" --location=$REGION

    Mulai tugas.

    gcloud scheduler jobs run publisher-job --location=$REGION
  5. Gunakan perintah berikut untuk meng-clone repositori quickstart dan membuka direktori kode contoh:

    Java

    git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git
    cd java-docs-samples/pubsub/streaming-analytics

    Python

    git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git
    cd python-docs-samples/pubsub/streaming-analytics
    pip install -r requirements.txt  # Install Apache Beam dependencies

Streaming pesan dari Pub/Sub ke Cloud Storage

Contoh kode

Kode contoh ini menggunakan Dataflow untuk:

  • Membaca pesan Pub/Sub.
  • Membagi pesan jendela (atau grup) menjadi interval berukuran tetap berdasarkan stempel waktu publikasi.
  • Tulis pesan di setiap jendela ke file di Cloud Storage.

Java


import java.io.IOException;
import org.apache.beam.examples.common.WriteOneFilePerWindow;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.io.gcp.pubsub.PubsubIO;
import org.apache.beam.sdk.options.Default;
import org.apache.beam.sdk.options.Description;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.StreamingOptions;
import org.apache.beam.sdk.options.Validation.Required;
import org.apache.beam.sdk.transforms.windowing.FixedWindows;
import org.apache.beam.sdk.transforms.windowing.Window;
import org.joda.time.Duration;

public class PubSubToGcs {
  /*
   * Define your own configuration options. Add your own arguments to be processed
   * by the command-line parser, and specify default values for them.
   */
  public interface PubSubToGcsOptions extends StreamingOptions {
    @Description("The Cloud Pub/Sub topic to read from.")
    @Required
    String getInputTopic();

    void setInputTopic(String value);

    @Description("Output file's window size in number of minutes.")
    @Default.Integer(1)
    Integer getWindowSize();

    void setWindowSize(Integer value);

    @Description("Path of the output file including its filename prefix.")
    @Required
    String getOutput();

    void setOutput(String value);
  }

  public static void main(String[] args) throws IOException {
    // The maximum number of shards when writing output.
    int numShards = 1;

    PubSubToGcsOptions options =
        PipelineOptionsFactory.fromArgs(args).withValidation().as(PubSubToGcsOptions.class);

    options.setStreaming(true);

    Pipeline pipeline = Pipeline.create(options);

    pipeline
        // 1) Read string messages from a Pub/Sub topic.
        .apply("Read PubSub Messages", PubsubIO.readStrings().fromTopic(options.getInputTopic()))
        // 2) Group the messages into fixed-sized minute intervals.
        .apply(Window.into(FixedWindows.of(Duration.standardMinutes(options.getWindowSize()))))
        // 3) Write one file to GCS for every window of messages.
        .apply("Write Files to GCS", new WriteOneFilePerWindow(options.getOutput(), numShards));

    // Execute the pipeline and wait until it finishes running.
    pipeline.run().waitUntilFinish();
  }
}

Python

import argparse
from datetime import datetime
import logging
import random

from apache_beam import (
    DoFn,
    GroupByKey,
    io,
    ParDo,
    Pipeline,
    PTransform,
    WindowInto,
    WithKeys,
)
from apache_beam.options.pipeline_options import PipelineOptions
from apache_beam.transforms.window import FixedWindows


class GroupMessagesByFixedWindows(PTransform):
    """A composite transform that groups Pub/Sub messages based on publish time
    and outputs a list of tuples, each containing a message and its publish time.
    """

    def __init__(self, window_size, num_shards=5):
        # Set window size to 60 seconds.
        self.window_size = int(window_size * 60)
        self.num_shards = num_shards

    def expand(self, pcoll):
        return (
            pcoll
            # Bind window info to each element using element timestamp (or publish time).
            | "Window into fixed intervals"
            >> WindowInto(FixedWindows(self.window_size))
            | "Add timestamp to windowed elements" >> ParDo(AddTimestamp())
            # Assign a random key to each windowed element based on the number of shards.
            | "Add key" >> WithKeys(lambda _: random.randint(0, self.num_shards - 1))
            # Group windowed elements by key. All the elements in the same window must fit
            # memory for this. If not, you need to use `beam.util.BatchElements`.
            | "Group by key" >> GroupByKey()
        )


class AddTimestamp(DoFn):
    def process(self, element, publish_time=DoFn.TimestampParam):
        """Processes each windowed element by extracting the message body and its
        publish time into a tuple.
        """
        yield (
            element.decode("utf-8"),
            datetime.utcfromtimestamp(float(publish_time)).strftime(
                "%Y-%m-%d %H:%M:%S.%f"
            ),
        )


class WriteToGCS(DoFn):
    def __init__(self, output_path):
        self.output_path = output_path

    def process(self, key_value, window=DoFn.WindowParam):
        """Write messages in a batch to Google Cloud Storage."""

        ts_format = "%H:%M"
        window_start = window.start.to_utc_datetime().strftime(ts_format)
        window_end = window.end.to_utc_datetime().strftime(ts_format)
        shard_id, batch = key_value
        filename = "-".join([self.output_path, window_start, window_end, str(shard_id)])

        with io.gcsio.GcsIO().open(filename=filename, mode="w") as f:
            for message_body, publish_time in batch:
                f.write(f"{message_body},{publish_time}\n".encode())


def run(input_topic, output_path, window_size=1.0, num_shards=5, pipeline_args=None):
    # Set `save_main_session` to True so DoFns can access globally imported modules.
    pipeline_options = PipelineOptions(
        pipeline_args, streaming=True, save_main_session=True
    )

    with Pipeline(options=pipeline_options) as pipeline:
        (
            pipeline
            # Because `timestamp_attribute` is unspecified in `ReadFromPubSub`, Beam
            # binds the publish time returned by the Pub/Sub server for each message
            # to the element's timestamp parameter, accessible via `DoFn.TimestampParam`.
            # https://beam.apache.org/releases/pydoc/current/apache_beam.io.gcp.pubsub.html#apache_beam.io.gcp.pubsub.ReadFromPubSub
            | "Read from Pub/Sub" >> io.ReadFromPubSub(topic=input_topic)
            | "Window into" >> GroupMessagesByFixedWindows(window_size, num_shards)
            | "Write to GCS" >> ParDo(WriteToGCS(output_path))
        )


if __name__ == "__main__":
    logging.getLogger().setLevel(logging.INFO)

    parser = argparse.ArgumentParser()
    parser.add_argument(
        "--input_topic",
        help="The Cloud Pub/Sub topic to read from."
        '"projects/<PROJECT_ID>/topics/<TOPIC_ID>".',
    )
    parser.add_argument(
        "--window_size",
        type=float,
        default=1.0,
        help="Output file's window size in minutes.",
    )
    parser.add_argument(
        "--output_path",
        help="Path of the output GCS file including the prefix.",
    )
    parser.add_argument(
        "--num_shards",
        type=int,
        default=5,
        help="Number of shards to use when writing windowed elements to GCS.",
    )
    known_args, pipeline_args = parser.parse_known_args()

    run(
        known_args.input_topic,
        known_args.output_path,
        known_args.window_size,
        known_args.num_shards,
        pipeline_args,
    )

Memulai pipeline

Untuk memulai pipeline, jalankan perintah berikut:

Java

mvn compile exec:java \
  -Dexec.mainClass=com.examples.pubsub.streaming.PubSubToGcs \
  -Dexec.cleanupDaemonThreads=false \
  -Dexec.args=" \
    --project=$PROJECT_ID \
    --region=$REGION \
    --inputTopic=projects/$PROJECT_ID/topics/$TOPIC_ID \
    --output=gs://$BUCKET_NAME/samples/output \
    --gcpTempLocation=gs://$BUCKET_NAME/temp \
    --runner=DataflowRunner \
    --windowSize=2 \
    --serviceAccount=$SERVICE_ACCOUNT"

Python

python PubSubToGCS.py \
  --project=$PROJECT_ID \
  --region=$REGION \
  --input_topic=projects/$PROJECT_ID/topics/$TOPIC_ID \
  --output_path=gs://$BUCKET_NAME/samples/output \
  --runner=DataflowRunner \
  --window_size=2 \
  --num_shards=2 \
  --temp_location=gs://$BUCKET_NAME/temp \
  --service_account_email=$SERVICE_ACCOUNT

Perintah sebelumnya berjalan secara lokal dan meluncurkan tugas Dataflow yang berjalan di cloud. Saat perintah menampilkan JOB_MESSAGE_DETAILED: Workers have started successfully, keluar dari program lokal menggunakan Ctrl+C.

Mengamati progres tugas dan pipeline

Anda dapat mengamati progres tugas di konsol Dataflow.

Buka konsol Dataflow

Mengamati progres tugas

Buka tampilan detail tugas untuk melihat:

  • Struktur tugas
  • Log tugas
  • Metrik tahap

Mengamati progres tugas

Anda mungkin harus menunggu beberapa menit untuk melihat file output di Cloud Storage.

Mengamati progres tugas

Atau, gunakan command line di bawah untuk memeriksa file mana yang telah ditulis.

gcloud storage ls gs://${BUCKET_NAME}/samples/

Outputnya akan terlihat seperti berikut ini:

Java

gs://{$BUCKET_NAME}/samples/output-22:30-22:32-0-of-1
gs://{$BUCKET_NAME}/samples/output-22:32-22:34-0-of-1
gs://{$BUCKET_NAME}/samples/output-22:34-22:36-0-of-1
gs://{$BUCKET_NAME}/samples/output-22:36-22:38-0-of-1

Python

gs://{$BUCKET_NAME}/samples/output-22:30-22:32-0
gs://{$BUCKET_NAME}/samples/output-22:30-22:32-1
gs://{$BUCKET_NAME}/samples/output-22:32-22:34-0
gs://{$BUCKET_NAME}/samples/output-22:32-22:34-1

Pembersihan

Agar tidak menimbulkan biaya pada akun Google Cloud Anda untuk resource yang digunakan pada halaman ini, hapus project Google Cloud yang berisi resource tersebut.

  1. Hapus tugas Cloud Scheduler.

    gcloud scheduler jobs delete publisher-job --location=$REGION
  2. Di konsol Dataflow, hentikan tugas. Batalkan pipeline tanpa menghabiskannya.

  3. Menghapus topik.

    gcloud pubsub topics delete $TOPIC_ID
  4. Hapus file yang dibuat oleh pipeline.

    gcloud storage rm "gs://${BUCKET_NAME}/samples/output*" --recursive --continue-on-error
    gcloud storage rm "gs://${BUCKET_NAME}/temp/*" --recursive --continue-on-error
  5. Hapus bucket Cloud Storage.

    gcloud storage rm gs://${BUCKET_NAME} --recursive

  6. Hapus akun layanan:
    gcloud iam service-accounts delete SERVICE_ACCOUNT_EMAIL
  7. Optional: Revoke the authentication credentials that you created, and delete the local credential file.

    gcloud auth application-default revoke
  8. Optional: Revoke credentials from the gcloud CLI.

    gcloud auth revoke

Langkah selanjutnya