Analiza entidades

El análisis de entidades inspecciona el texto dado en busca de entidades conocidas (nombres propios como figuras públicas, puntos de referencia, etc.) y muestra información sobre ellas. Se ejecuta con el método analyzeEntities. Para obtener información sobre los tipos de entidades que identifica Natural Language, consulta la documentación de Entidad. Para obtener información sobre los idiomas compatibles con Natural Language, consulta Idiomas compatibles.

Esta sección muestra algunas maneras de detectar entidades en un documento.

Analiza entidades en una string

Aquí hay un ejemplo de cómo realizar análisis de entidades en una string de texto enviada directamente a Natural Language:

Protocolo

Para analizar entidades en un documento, realiza una solicitud POST al método documents:analyzeEntities de REST y proporciona el cuerpo de solicitud adecuado, como se muestra en el siguiente ejemplo.

En este ejemplo, se usa el comando gcloud auth application-default print-access-token a fin de obtener un token de acceso correspondiente a una cuenta de servicio configurada para el proyecto con el SDK de Cloud de Google Cloud Platform. Para obtener instrucciones sobre cómo instalar el SDK de Cloud y configurar un proyecto con una cuenta de servicio, consulta la Guía de inicio rápido.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'encodingType': 'UTF8',
  'document': {
    'type': 'PLAIN_TEXT',
    'content': 'President Trump will speak from the White House, located
  at 1600 Pennsylvania Ave NW, Washington, DC, on October 7.'
  }
}" "https://language.googleapis.com/v1/documents:analyzeEntities"

Si no especificas document.language, el idioma se detectará automáticamente. Para obtener información sobre los idiomas compatibles con Natural Language, consulta Idiomas compatibles. Consulta la documentación de referencia de Document para obtener más información sobre la configuración del cuerpo de la solicitud.

Si la solicitud se completa correctamente, el servidor muestra un código de estado HTTP 200 OK y la respuesta en formato JSON, como se muestra a continuación:

{
  "entities": [
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {
        "mid": "/m/0cqt90",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Donald_Trump"
      },
      "salience": 0.7936003,
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": 10
          },
          "type": "PROPER"
        },
        {
          "text": {
            "content": "President",
            "beginOffset": 0
          },
          "type": "COMMON"
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/081sq",
        "wikipedia_url": "https://en.wikipedia.org/wiki/White_House"
      },
      "salience": 0.09172433,
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": 36
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {
        "mid": "/g/1tgb87cq"
      },
      "salience": 0.085507184,
      "mentions": [
        {
          "text": {
            "content": "Pennsylvania Ave NW",
            "beginOffset": 65
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/0rh6k",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Washington,_D.C."
      },
      "salience": 0.029168168,
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": 86
          },
          "type": "PROPER"
        }
      ]
    }
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "country": "US",
        "sublocality": "Fort Lesley J. McNair",
        "locality": "Washington",
        "street_name": "Pennsylvania Avenue Northwest",
        "broad_region": "District of Columbia",
        "narrow_region": "District of Columbia",
        "street_number": "1600"
      },
      "salience": 0,
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": 60
          },
          "type": "TYPE_UNKNOWN"
        }
      ]
      }
    }
    {
      "name": "1600",
       "type": "NUMBER",
       "metadata": {
           "value": "1600"
       },
       "salience": 0,
       "mentions": [
         {
          "text": {
              "content": "1600",
              "beginOffset": 60
           },
           "type": "TYPE_UNKNOWN"
        }
     ]
     },
     {
       "name": "October 7",
       "type": "DATE",
       "metadata": {
         "day": "7",
         "month": "10"
       },
       "salience": 0,
       "mentions": [
         {
           "text": {
             "content": "October 7",
             "beginOffset": 105
            },
           "type": "TYPE_UNKNOWN"
         }
       ]
     }
     {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "salience": 0,
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": 113
          },
          "type": "TYPE_UNKNOWN"
        }
      ]
    }
  ],
  "language": "en"
}

El arreglo entities contiene objetos Entity que representan las entidades detectadas, incluida información sobre el nombre y el tipo de entidad.

gcloud

Consulta el comando analyze-entities para obtener todos los detalles.

Para realizar un análisis de entidades, usa la herramienta de línea de comandos de gcloud y también utiliza la marca --content para identificar el contenido que se analizará:

gcloud ml language analyze-entities --content="President Trump will speak from the White House, located
  at 1600 Pennsylvania Ave NW, Washington, DC, on October 7."

Si la solicitud se realiza correctamente, el servidor muestra una respuesta en formato JSON, como se muestra a continuación:

{
  "entities": [
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {
        "mid": "/m/0cqt90",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Donald_Trump"
      },
      "salience": 0.7936003,
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": 10
          },
          "type": "PROPER"
        },
        {
          "text": {
            "content": "President",
            "beginOffset": 0
          },
          "type": "COMMON"
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/081sq",
        "wikipedia_url": "https://en.wikipedia.org/wiki/White_House"
      },
      "salience": 0.09172433,
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": 36
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {
        "mid": "/g/1tgb87cq"
      },
      "salience": 0.085507184,
      "mentions": [
        {
          "text": {
            "content": "Pennsylvania Ave NW",
            "beginOffset": 65
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/0rh6k",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Washington,_D.C."
      },
      "salience": 0.029168168,
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": 86
          },
          "type": "PROPER"
        }
      ]
    }
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "country": "US",
        "sublocality": "Fort Lesley J. McNair",
        "locality": "Washington",
        "street_name": "Pennsylvania Avenue Northwest",
        "broad_region": "District of Columbia",
        "narrow_region": "District of Columbia",
        "street_number": "1600"
      },
      "salience": 0,
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": 60
          },
          "type": "TYPE_UNKNOWN"
        }
      ]
      }
    }
    {
      "name": "1600",
       "type": "NUMBER",
       "metadata": {
           "value": "1600"
       },
       "salience": 0,
       "mentions": [
         {
          "text": {
              "content": "1600",
              "beginOffset": 60
           },
           "type": "TYPE_UNKNOWN"
        }
     ]
     },
     {
       "name": "October 7",
       "type": "DATE",
       "metadata": {
         "day": "7",
         "month": "10"
       },
       "salience": 0,
       "mentions": [
         {
           "text": {
             "content": "October 7",
             "beginOffset": 105
            },
           "type": "TYPE_UNKNOWN"
         }
       ]
     }
     {
       "name": "7",
       "type": "NUMBER",
       "metadata": {
         "value": "7"
       },
       "salience": 0,
       "mentions": [
         {
           "text": {
             "content": "7",
             "beginOffset": 113
           },
         "type": "TYPE_UNKNOWN"
         }
        ]
     }
  ],
  "language": "en"
}

El arreglo entities contiene objetos Entity que representan las entidades detectadas, incluida información sobre el nombre y el tipo de entidad.

C#

private static void AnalyzeEntitiesFromText(string text)
{
    var client = LanguageServiceClient.Create();
    var response = client.AnalyzeEntities(new Document()
    {
        Content = text,
        Type = Document.Types.Type.PlainText
    });
    WriteEntities(response.Entities);
}

private static void WriteEntities(IEnumerable<Entity> entities)
{
    Console.WriteLine("Entities:");
    foreach (var entity in entities)
    {
        Console.WriteLine($"\tName: {entity.Name}");
        Console.WriteLine($"\tType: {entity.Type}");
        Console.WriteLine($"\tSalience: {entity.Salience}");
        Console.WriteLine("\tMentions:");
        foreach (var mention in entity.Mentions)
            Console.WriteLine($"\t\t{mention.Text.BeginOffset}: {mention.Text.Content}");
        Console.WriteLine("\tMetadata:");
        foreach (var keyval in entity.Metadata)
        {
            Console.WriteLine($"\t\t{keyval.Key}: {keyval.Value}");
        }
    }
}

Go


func analyzeEntities(ctx context.Context, client *language.Client, text string) (*languagepb.AnalyzeEntitiesResponse, error) {
	return client.AnalyzeEntities(ctx, &languagepb.AnalyzeEntitiesRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_Content{
				Content: text,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})
}

Java

// Instantiate the Language client com.google.cloud.language.v1.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  Document doc = Document.newBuilder().setContent(text).setType(Type.PLAIN_TEXT).build();
  AnalyzeEntitiesRequest request =
      AnalyzeEntitiesRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(EncodingType.UTF16)
          .build();

  AnalyzeEntitiesResponse response = language.analyzeEntities(request);

  // Print the response
  for (Entity entity : response.getEntitiesList()) {
    System.out.printf("Entity: %s", entity.getName());
    System.out.printf("Salience: %.3f\n", entity.getSalience());
    System.out.println("Metadata: ");
    for (Map.Entry<String, String> entry : entity.getMetadataMap().entrySet()) {
      System.out.printf("%s : %s", entry.getKey(), entry.getValue());
    }
    for (EntityMention mention : entity.getMentionsList()) {
      System.out.printf("Begin offset: %d\n", mention.getText().getBeginOffset());
      System.out.printf("Content: %s\n", mention.getText().getContent());
      System.out.printf("Type: %s\n\n", mention.getType());
    }
  }
}

Node.js

// Imports the Google Cloud client library
const language = require('@google-cloud/language');

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following line to run this code.
 */
// const text = 'Your text to analyze, e.g. Hello, world!';

// Prepares a document, representing the provided text
const document = {
  content: text,
  type: 'PLAIN_TEXT',
};

// Detects entities in the document
const [result] = await client.analyzeEntities({document});

const entities = result.entities;

console.log('Entities:');
entities.forEach(entity => {
  console.log(entity.name);
  console.log(` - Type: ${entity.type}, Salience: ${entity.salience}`);
  if (entity.metadata && entity.metadata.wikipedia_url) {
    console.log(` - Wikipedia URL: ${entity.metadata.wikipedia_url}`);
  }
});

PHP

use Google\Cloud\Language\V1\Document;
use Google\Cloud\Language\V1\Document\Type;
use Google\Cloud\Language\V1\LanguageServiceClient;
use Google\Cloud\Language\V1\Entity\Type as EntityType;

/** Uncomment and populate these variables in your code */
// $text = 'The text to analyze.';

// Create the Natural Language client
$languageServiceClient = new LanguageServiceClient();
try {
    // Create a new Document, add text as content and set type to PLAIN_TEXT
    $document = (new Document())
        ->setContent($text)
        ->setType(Type::PLAIN_TEXT);

    // Call the analyzeEntities function
    $response = $languageServiceClient->analyzeEntities($document, []);
    $entities = $response->getEntities();
    // Print out information about each entity
    foreach ($entities as $entity) {
        printf('Name: %s' . PHP_EOL, $entity->getName());
        printf('Type: %s' . PHP_EOL, EntityType::name($entity->getType()));
        printf('Salience: %s' . PHP_EOL, $entity->getSalience());
        if ($entity->getMetadata()->offsetExists('wikipedia_url')) {
            printf('Wikipedia URL: %s' . PHP_EOL, $entity->getMetadata()->offsetGet('wikipedia_url'));
        }
        if ($entity->getMetadata()->offsetExists('mid')) {
            printf('Knowledge Graph MID: %s' . PHP_EOL, $entity->getMetadata()->offsetGet('mid'));
        }
        printf(PHP_EOL);
    }
} finally {
    $languageServiceClient->close();
}

Python

from google.cloud import language_v1
from google.cloud.language_v1 import enums

def sample_analyze_entities(text_content):
    """
    Analyzing Entities in a String

    Args:
      text_content The text content to analyze
    """

    client = language_v1.LanguageServiceClient()

    # text_content = 'California is a state.'

    # Available types: PLAIN_TEXT, HTML
    type_ = enums.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language = "en"
    document = {"content": text_content, "type": type_, "language": language}

    # Available values: NONE, UTF8, UTF16, UTF32
    encoding_type = enums.EncodingType.UTF8

    response = client.analyze_entities(document, encoding_type=encoding_type)

    # Loop through entitites returned from the API
    for entity in response.entities:
        print(u"Representative name for the entity: {}".format(entity.name))

        # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al
        print(u"Entity type: {}".format(enums.Entity.Type(entity.type).name))

        # Get the salience score associated with the entity in the [0, 1.0] range
        print(u"Salience score: {}".format(entity.salience))

        # Loop over the metadata associated with entity. For many known entities,
        # the metadata is a Wikipedia URL (wikipedia_url) and Knowledge Graph MID (mid).
        # Some entity types may have additional metadata, e.g. ADDRESS entities
        # may have metadata for the address street_name, postal_code, et al.
        for metadata_name, metadata_value in entity.metadata.items():
            print(u"{}: {}".format(metadata_name, metadata_value))

        # Loop over the mentions of this entity in the input document.
        # The API currently supports proper noun mentions.
        for mention in entity.mentions:
            print(u"Mention text: {}".format(mention.text.content))

            # Get the mention type, e.g. PROPER for proper noun
            print(
                u"Mention type: {}".format(enums.EntityMention.Type(mention.type).name)
            )

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(u"Language of the text: {}".format(response.language))

Ruby

# text_content = "Text to extract entities from"

require "google/cloud/language"

language = Google::Cloud::Language.language_service

document = { content: text_content, type: :PLAIN_TEXT }
response = language.analyze_entities document: document

entities = response.entities

entities.each do |entity|
  puts "Entity #{entity.name} #{entity.type}"

  puts "URL: #{entity.metadata['wikipedia_url']}" if entity.metadata["wikipedia_url"]
end

Analiza entidades en Google Cloud Storage

Para mayor comodidad, Natural Language puede realizar análisis de entidades directamente en un archivo ubicado en Google Cloud Storage, sin la necesidad de enviar el contenido del archivo en el cuerpo de tu solicitud.

El siguiente es un ejemplo de cómo realizar un análisis de entidades en un archivo ubicado en Cloud Storage.

Protocolo

Para analizar entidades en un documento almacenado en Google Cloud Storage, realiza una solicitud POST al método documents:analyzeEntities de REST y proporciona el cuerpo de la solicitud adecuado con la ruta del documento, como se muestra en el siguiente ejemplo.

curl -X POST \
     -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
     -H "Content-Type: application/json; charset=utf-8" \
     --data "{
  'document':{
    'type':'PLAIN_TEXT',
    'gcsContentUri':'gs://<bucket-name>/<object-name>'
  }
}" "https://language.googleapis.com/v1/documents:analyzeEntities"

Si no especificas document.language, el idioma se detectará automáticamente. Para obtener información sobre los idiomas compatibles con Natural Language, consulta Idiomas compatibles. Consulta la documentación de referencia de Document para obtener más información sobre la configuración del cuerpo de la solicitud.

Si la solicitud se completa correctamente, el servidor muestra un código de estado HTTP 200 OK y la respuesta en formato JSON, como se muestra a continuación:

{
  "entities": [
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {
        "mid": "/m/0cqt90",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Donald_Trump"
      },
      "salience": 0.7936003,
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": 10
          },
          "type": "PROPER"
        },
        {
          "text": {
            "content": "President",
            "beginOffset": 0
          },
          "type": "COMMON"
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/081sq",
        "wikipedia_url": "https://en.wikipedia.org/wiki/White_House"
      },
      "salience": 0.09172433,
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": 36
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {
        "mid": "/g/1tgb87cq"
      },
      "salience": 0.085507184,
      "mentions": [
        {
          "text": {
            "content": "Pennsylvania Ave NW",
            "beginOffset": 65
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/0rh6k",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Washington,_D.C."
      },
      "salience": 0.029168168,
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": 86
          },
          "type": "PROPER"
        }
      ]
    }
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "country": "US",
        "sublocality": "Fort Lesley J. McNair",
        "locality": "Washington",
        "street_name": "Pennsylvania Avenue Northwest",
        "broad_region": "District of Columbia",
        "narrow_region": "District of Columbia",
        "street_number": "1600"
      },
      "salience": 0,
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": 60
          },
          "type": "TYPE_UNKNOWN"
        }
      ]
      }
    }
    {
      "name": "1600",
       "type": "NUMBER",
       "metadata": {
           "value": "1600"
       },
       "salience": 0,
       "mentions": [
         {
          "text": {
              "content": "1600",
              "beginOffset": 60
           },
           "type": "TYPE_UNKNOWN"
        }
     ]
     },
     {
       "name": "October 7",
       "type": "DATE",
       "metadata": {
         "day": "7",
         "month": "10"
       },
       "salience": 0,
       "mentions": [
         {
           "text": {
             "content": "October 7",
             "beginOffset": 105
            },
           "type": "TYPE_UNKNOWN"
         }
       ]
     }
     {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "salience": 0,
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": 113
          },
          "type": "TYPE_UNKNOWN"
        }
      ]
    }
  ],
  "language": "en"
}

El arreglo entities contiene objetos Entity que representan las entidades detectadas, incluida información sobre el nombre y el tipo de entidad.

gcloud

Consulta el comando analyze-entities para obtener todos los detalles.

Para realizar un análisis de entidades en un archivo de Google Cloud Storage, usa la herramienta de línea de comandos gcloud y también utiliza la marca --content-file para identificar la ruta del archivo que tiene el contenido que analizarás:

gcloud ml language analyze-entities --content-file=gs://YOUR_BUCKET_NAME/YOUR_FILE_NAME

Si la solicitud se realiza correctamente, el servidor muestra una respuesta en formato JSON, como se muestra a continuación:

{
  "entities": [
    {
      "name": "Trump",
      "type": "PERSON",
      "metadata": {
        "mid": "/m/0cqt90",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Donald_Trump"
      },
      "salience": 0.7936003,
      "mentions": [
        {
          "text": {
            "content": "Trump",
            "beginOffset": 10
          },
          "type": "PROPER"
        },
        {
          "text": {
            "content": "President",
            "beginOffset": 0
          },
          "type": "COMMON"
        }
      ]
    },
    {
      "name": "White House",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/081sq",
        "wikipedia_url": "https://en.wikipedia.org/wiki/White_House"
      },
      "salience": 0.09172433,
      "mentions": [
        {
          "text": {
            "content": "White House",
            "beginOffset": 36
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Pennsylvania Ave NW",
      "type": "LOCATION",
      "metadata": {
        "mid": "/g/1tgb87cq"
      },
      "salience": 0.085507184,
      "mentions": [
        {
          "text": {
            "content": "Pennsylvania Ave NW",
            "beginOffset": 65
          },
          "type": "PROPER"
        }
      ]
    },
    {
      "name": "Washington, DC",
      "type": "LOCATION",
      "metadata": {
        "mid": "/m/0rh6k",
        "wikipedia_url": "https://en.wikipedia.org/wiki/Washington,_D.C."
      },
      "salience": 0.029168168,
      "mentions": [
        {
          "text": {
            "content": "Washington, DC",
            "beginOffset": 86
          },
          "type": "PROPER"
        }
      ]
    }
    {
      "name": "1600 Pennsylvania Ave NW, Washington, DC",
      "type": "ADDRESS",
      "metadata": {
        "country": "US",
        "sublocality": "Fort Lesley J. McNair",
        "locality": "Washington",
        "street_name": "Pennsylvania Avenue Northwest",
        "broad_region": "District of Columbia",
        "narrow_region": "District of Columbia",
        "street_number": "1600"
      },
      "salience": 0,
      "mentions": [
        {
          "text": {
            "content": "1600 Pennsylvania Ave NW, Washington, DC",
            "beginOffset": 60
          },
          "type": "TYPE_UNKNOWN"
        }
      ]
      }
    }
    {
      "name": "1600",
       "type": "NUMBER",
       "metadata": {
           "value": "1600"
       },
       "salience": 0,
       "mentions": [
         {
          "text": {
              "content": "1600",
              "beginOffset": 60
           },
           "type": "TYPE_UNKNOWN"
        }
     ]
     },
     {
       "name": "October 7",
       "type": "DATE",
       "metadata": {
         "day": "7",
         "month": "10"
       },
       "salience": 0,
       "mentions": [
         {
           "text": {
             "content": "October 7",
             "beginOffset": 105
            },
           "type": "TYPE_UNKNOWN"
         }
       ]
     }
     {
      "name": "7",
      "type": "NUMBER",
      "metadata": {
        "value": "7"
      },
      "salience": 0,
      "mentions": [
        {
          "text": {
            "content": "7",
            "beginOffset": 113
          },
          "type": "TYPE_UNKNOWN"
        }
      ]
    }
  ],
  "language": "en"
}

El arreglo entities contiene objetos Entity que representan las entidades detectadas, incluida información sobre el nombre y el tipo de entidad.

C#

private static void AnalyzeEntitiesFromFile(string gcsUri)
{
    var client = LanguageServiceClient.Create();
    var response = client.AnalyzeEntities(new Document()
    {
        GcsContentUri = gcsUri,
        Type = Document.Types.Type.PlainText
    });
    WriteEntities(response.Entities);
}
private static void WriteEntities(IEnumerable<Entity> entities)
{
    Console.WriteLine("Entities:");
    foreach (var entity in entities)
    {
        Console.WriteLine($"\tName: {entity.Name}");
        Console.WriteLine($"\tType: {entity.Type}");
        Console.WriteLine($"\tSalience: {entity.Salience}");
        Console.WriteLine("\tMentions:");
        foreach (var mention in entity.Mentions)
            Console.WriteLine($"\t\t{mention.Text.BeginOffset}: {mention.Text.Content}");
        Console.WriteLine("\tMetadata:");
        foreach (var keyval in entity.Metadata)
        {
            Console.WriteLine($"\t\t{keyval.Key}: {keyval.Value}");
        }
    }
}

Go


func analyzeEntitiesFromGCS(ctx context.Context, gcsURI string) (*languagepb.AnalyzeEntitiesResponse, error) {
	return client.AnalyzeEntities(ctx, &languagepb.AnalyzeEntitiesRequest{
		Document: &languagepb.Document{
			Source: &languagepb.Document_GcsContentUri{
				GcsContentUri: gcsURI,
			},
			Type: languagepb.Document_PLAIN_TEXT,
		},
		EncodingType: languagepb.EncodingType_UTF8,
	})
}

Java

// Instantiate the Language client com.google.cloud.language.v1.LanguageServiceClient
try (LanguageServiceClient language = LanguageServiceClient.create()) {
  // set the GCS Content URI path to the file to be analyzed
  Document doc =
      Document.newBuilder().setGcsContentUri(gcsUri).setType(Type.PLAIN_TEXT).build();
  AnalyzeEntitiesRequest request =
      AnalyzeEntitiesRequest.newBuilder()
          .setDocument(doc)
          .setEncodingType(EncodingType.UTF16)
          .build();

  AnalyzeEntitiesResponse response = language.analyzeEntities(request);

  // Print the response
  for (Entity entity : response.getEntitiesList()) {
    System.out.printf("Entity: %s\n", entity.getName());
    System.out.printf("Salience: %.3f\n", entity.getSalience());
    System.out.println("Metadata: ");
    for (Map.Entry<String, String> entry : entity.getMetadataMap().entrySet()) {
      System.out.printf("%s : %s", entry.getKey(), entry.getValue());
    }
    for (EntityMention mention : entity.getMentionsList()) {
      System.out.printf("Begin offset: %d\n", mention.getText().getBeginOffset());
      System.out.printf("Content: %s\n", mention.getText().getContent());
      System.out.printf("Type: %s\n\n", mention.getType());
    }
  }
}

Node.js

// Imports the Google Cloud client library
const language = require('@google-cloud/language');

// Creates a client
const client = new language.LanguageServiceClient();

/**
 * TODO(developer): Uncomment the following lines to run this code
 */
// const bucketName = 'Your bucket name, e.g. my-bucket';
// const fileName = 'Your file name, e.g. my-file.txt';

// Prepares a document, representing a text file in Cloud Storage
const document = {
  gcsContentUri: `gs://${bucketName}/${fileName}`,
  type: 'PLAIN_TEXT',
};

// Detects entities in the document
const [result] = await client.analyzeEntities({document});
const entities = result.entities;

console.log('Entities:');
entities.forEach(entity => {
  console.log(entity.name);
  console.log(` - Type: ${entity.type}, Salience: ${entity.salience}`);
  if (entity.metadata && entity.metadata.wikipedia_url) {
    console.log(` - Wikipedia URL: ${entity.metadata.wikipedia_url}`);
  }
});

PHP

use Google\Cloud\Language\V1\Document;
use Google\Cloud\Language\V1\Document\Type;
use Google\Cloud\Language\V1\LanguageServiceClient;
use Google\Cloud\Language\V1\Entity\Type as EntityType;

/** Uncomment and populate these variables in your code */
// $uri = 'The cloud storage object to analyze (gs://your-bucket-name/your-object-name)';

// Create the Natural Language client
$languageServiceClient = new LanguageServiceClient();
try {
    // Create a new Document, pass GCS URI and set type to PLAIN_TEXT
    $document = (new Document())
        ->setGcsContentUri($uri)
        ->setType(Type::PLAIN_TEXT);

    // Call the analyzeEntities function
    $response = $languageServiceClient->analyzeEntities($document, []);
    $entities = $response->getEntities();
    // Print out information about each entity
    foreach ($entities as $entity) {
        printf('Name: %s' . PHP_EOL, $entity->getName());
        printf('Type: %s' . PHP_EOL, EntityType::name($entity->getType()));
        printf('Salience: %s' . PHP_EOL, $entity->getSalience());
        if ($entity->getMetadata()->offsetExists('wikipedia_url')) {
            printf('Wikipedia URL: %s' . PHP_EOL, $entity->getMetadata()->offsetGet('wikipedia_url'));
        }
        if ($entity->getMetadata()->offsetExists('mid')) {
            printf('Knowledge Graph MID: %s' . PHP_EOL, $entity->getMetadata()->offsetGet('mid'));
        }
        printf(PHP_EOL);
    }
} finally {
    $languageServiceClient->close();
}

Python

from google.cloud import language_v1
from google.cloud.language_v1 import enums

def sample_analyze_entities(gcs_content_uri):
    """
    Analyzing Entities in text file stored in Cloud Storage

    Args:
      gcs_content_uri Google Cloud Storage URI where the file content is located.
      e.g. gs://[Your Bucket]/[Path to File]
    """

    client = language_v1.LanguageServiceClient()

    # gcs_content_uri = 'gs://cloud-samples-data/language/entity.txt'

    # Available types: PLAIN_TEXT, HTML
    type_ = enums.Document.Type.PLAIN_TEXT

    # Optional. If not specified, the language is automatically detected.
    # For list of supported languages:
    # https://cloud.google.com/natural-language/docs/languages
    language = "en"
    document = {"gcs_content_uri": gcs_content_uri, "type": type_, "language": language}

    # Available values: NONE, UTF8, UTF16, UTF32
    encoding_type = enums.EncodingType.UTF8

    response = client.analyze_entities(document, encoding_type=encoding_type)
    # Loop through entitites returned from the API
    for entity in response.entities:
        print(u"Representative name for the entity: {}".format(entity.name))
        # Get entity type, e.g. PERSON, LOCATION, ADDRESS, NUMBER, et al
        print(u"Entity type: {}".format(enums.Entity.Type(entity.type).name))
        # Get the salience score associated with the entity in the [0, 1.0] range
        print(u"Salience score: {}".format(entity.salience))
        # Loop over the metadata associated with entity. For many known entities,
        # the metadata is a Wikipedia URL (wikipedia_url) and Knowledge Graph MID (mid).
        # Some entity types may have additional metadata, e.g. ADDRESS entities
        # may have metadata for the address street_name, postal_code, et al.
        for metadata_name, metadata_value in entity.metadata.items():
            print(u"{}: {}".format(metadata_name, metadata_value))

        # Loop over the mentions of this entity in the input document.
        # The API currently supports proper noun mentions.
        for mention in entity.mentions:
            print(u"Mention text: {}".format(mention.text.content))
            # Get the mention type, e.g. PROPER for proper noun
            print(
                u"Mention type: {}".format(enums.EntityMention.Type(mention.type).name)
            )

    # Get the language of the text, which will be the same as
    # the language specified in the request or, if not specified,
    # the automatically-detected language.
    print(u"Language of the text: {}".format(response.language))

Ruby

# storage_path = "Path to file in Google Cloud Storage, eg. gs://bucket/file"

require "google/cloud/language"

language = Google::Cloud::Language.language_service

document = { gcs_content_uri: storage_path, type: :PLAIN_TEXT }
response = language.analyze_entities document: document

entities = response.entities

entities.each do |entity|
  puts "Entity #{entity.name} #{entity.type}"

  puts "URL: #{entity.metadata['wikipedia_url']}" if entity.metadata["wikipedia_url"]
end