Gravar métricas com o OpenCensus

Demonstra como gravar métricas com o OpenCensus.

Páginas de documentação que incluem esta amostra de código

Para visualizar o exemplo de código usado em contexto, consulte a seguinte documentação:

Exemplo de código

Go


// metrics_quickstart is an example of exporting a custom metric from
// OpenCensus to Stackdriver.
package main

import (
	"context"
	"fmt"
	"log"
	"time"

	"contrib.go.opencensus.io/exporter/stackdriver"
	"go.opencensus.io/stats"
	"go.opencensus.io/stats/view"
	"golang.org/x/exp/rand"
)

var (
	// The task latency in milliseconds.
	latencyMs = stats.Float64("task_latency", "The task latency in milliseconds", "ms")
)

func main() {
	ctx := context.Background()

	// Register the view. It is imperative that this step exists,
	// otherwise recorded metrics will be dropped and never exported.
	v := &view.View{
		Name:        "task_latency_distribution",
		Measure:     latencyMs,
		Description: "The distribution of the task latencies",

		// Latency in buckets:
		// [>=0ms, >=100ms, >=200ms, >=400ms, >=1s, >=2s, >=4s]
		Aggregation: view.Distribution(0, 100, 200, 400, 1000, 2000, 4000),
	}
	if err := view.Register(v); err != nil {
		log.Fatalf("Failed to register the view: %v", err)
	}

	// Enable OpenCensus exporters to export metrics
	// to Stackdriver Monitoring.
	// Exporters use Application Default Credentials to authenticate.
	// See https://developers.google.com/identity/protocols/application-default-credentials
	// for more details.
	exporter, err := stackdriver.NewExporter(stackdriver.Options{})
	if err != nil {
		log.Fatal(err)
	}
	// Flush must be called before main() exits to ensure metrics are recorded.
	defer exporter.Flush()

	if err := exporter.StartMetricsExporter(); err != nil {
		log.Fatalf("Error starting metric exporter: %v", err)
	}
	defer exporter.StopMetricsExporter()

	// Record 100 fake latency values between 0 and 5 seconds.
	for i := 0; i < 100; i++ {
		ms := float64(5*time.Second/time.Millisecond) * rand.Float64()
		fmt.Printf("Latency %d: %f\n", i, ms)
		stats.Record(ctx, latencyMs.M(ms))
		time.Sleep(1 * time.Second)
	}

	fmt.Println("Done recording metrics")
}

Java


import com.google.common.collect.Lists;
import io.opencensus.exporter.stats.stackdriver.StackdriverStatsExporter;
import io.opencensus.stats.Aggregation;
import io.opencensus.stats.BucketBoundaries;
import io.opencensus.stats.Measure.MeasureLong;
import io.opencensus.stats.Stats;
import io.opencensus.stats.StatsRecorder;
import io.opencensus.stats.View;
import io.opencensus.stats.View.Name;
import io.opencensus.stats.ViewManager;
import java.io.IOException;
import java.util.Collections;
import java.util.Random;
import java.util.concurrent.TimeUnit;

public class Quickstart {
  private static final int EXPORT_INTERVAL = 70;
  private static final MeasureLong LATENCY_MS =
      MeasureLong.create("task_latency", "The task latency in milliseconds", "ms");
  // Latency in buckets:
  // [>=0ms, >=100ms, >=200ms, >=400ms, >=1s, >=2s, >=4s]
  private static final BucketBoundaries LATENCY_BOUNDARIES =
      BucketBoundaries.create(Lists.newArrayList(0d, 100d, 200d, 400d, 1000d, 2000d, 4000d));
  private static final StatsRecorder STATS_RECORDER = Stats.getStatsRecorder();

  public static void main(String[] args) throws IOException, InterruptedException {
    // Register the view. It is imperative that this step exists,
    // otherwise recorded metrics will be dropped and never exported.
    View view =
        View.create(
            Name.create("task_latency_distribution"),
            "The distribution of the task latencies.",
            LATENCY_MS,
            Aggregation.Distribution.create(LATENCY_BOUNDARIES),
            Collections.emptyList());

    ViewManager viewManager = Stats.getViewManager();
    viewManager.registerView(view);

    // Enable OpenCensus exporters to export metrics to Stackdriver Monitoring.
    // Exporters use Application Default Credentials to authenticate.
    // See https://developers.google.com/identity/protocols/application-default-credentials
    // for more details.
    StackdriverStatsExporter.createAndRegister();

    // Record 100 fake latency values between 0 and 5 seconds.
    Random rand = new Random();
    for (int i = 0; i < 100; i++) {
      long ms = (long) (TimeUnit.MILLISECONDS.convert(5, TimeUnit.SECONDS) * rand.nextDouble());
      System.out.println(String.format("Latency %d: %d", i, ms));
      STATS_RECORDER.newMeasureMap().put(LATENCY_MS, ms).record();
    }

    // The default export interval is 60 seconds. The thread with the StackdriverStatsExporter must
    // live for at least the interval past any metrics that must be collected, or some risk being
    // lost if they are recorded after the last export.

    System.out.println(
        String.format(
            "Sleeping %d seconds before shutdown to ensure all records are flushed.",
            EXPORT_INTERVAL));
    Thread.sleep(TimeUnit.MILLISECONDS.convert(EXPORT_INTERVAL, TimeUnit.SECONDS));
  }
}

Node.js

'use strict';

const {globalStats, MeasureUnit, AggregationType} = require('@opencensus/core');
const {StackdriverStatsExporter} = require('@opencensus/exporter-stackdriver');

const EXPORT_INTERVAL = process.env.EXPORT_INTERVAL || 60;
const LATENCY_MS = globalStats.createMeasureInt64(
  'task_latency',
  MeasureUnit.MS,
  'The task latency in milliseconds'
);

// Register the view. It is imperative that this step exists,
// otherwise recorded metrics will be dropped and never exported.
const view = globalStats.createView(
  'task_latency_distribution',
  LATENCY_MS,
  AggregationType.DISTRIBUTION,
  [],
  'The distribution of the task latencies.',
  // Latency in buckets:
  // [>=0ms, >=100ms, >=200ms, >=400ms, >=1s, >=2s, >=4s]
  [0, 100, 200, 400, 1000, 2000, 4000]
);

// Then finally register the views
globalStats.registerView(view);

// Enable OpenCensus exporters to export metrics to Stackdriver Monitoring.
// Exporters use Application Default Credentials (ADCs) to authenticate.
// See https://developers.google.com/identity/protocols/application-default-credentials
// for more details.
// Expects ADCs to be provided through the environment as ${GOOGLE_APPLICATION_CREDENTIALS}
// A Stackdriver workspace is required and provided through the environment as ${GOOGLE_PROJECT_ID}
const projectId = process.env.GOOGLE_PROJECT_ID;

// GOOGLE_APPLICATION_CREDENTIALS are expected by a dependency of this code
// Not this code itself. Checking for existence here but not retaining (as not needed)
if (!projectId || !process.env.GOOGLE_APPLICATION_CREDENTIALS) {
  throw Error('Unable to proceed without a Project ID');
}

// The minimum reporting period for Stackdriver is 1 minute.
const exporter = new StackdriverStatsExporter({
  projectId: projectId,
  period: EXPORT_INTERVAL * 1000,
});

// Pass the created exporter to Stats
globalStats.registerExporter(exporter);

// Record 100 fake latency values between 0 and 5 seconds.
for (let i = 0; i < 100; i++) {
  const ms = Math.floor(Math.random() * 5);
  console.log(`Latency ${i}: ${ms}`);
  globalStats.record([
    {
      measure: LATENCY_MS,
      value: ms,
    },
  ]);
}

/**
 * The default export interval is 60 seconds. The thread with the
 * StackdriverStatsExporter must live for at least the interval past any
 * metrics that must be collected, or some risk being lost if they are recorded
 * after the last export.
 */
setTimeout(() => {
  console.log('Done recording metrics.');
  globalStats.unregisterExporter(exporter);
}, EXPORT_INTERVAL * 1000);

Python


from random import random
import time

from opencensus.ext.stackdriver import stats_exporter
from opencensus.stats import aggregation
from opencensus.stats import measure
from opencensus.stats import stats
from opencensus.stats import view

# A measure that represents task latency in ms.
LATENCY_MS = measure.MeasureFloat(
    "task_latency",
    "The task latency in milliseconds",
    "ms")

# A view of the task latency measure that aggregates measurements according to
# a histogram with predefined bucket boundaries. This aggregate is periodically
# exported to Stackdriver Monitoring.
LATENCY_VIEW = view.View(
    "task_latency_distribution",
    "The distribution of the task latencies",
    [],
    LATENCY_MS,
    # Latency in buckets: [>=0ms, >=100ms, >=200ms, >=400ms, >=1s, >=2s, >=4s]
    aggregation.DistributionAggregation(
        [100.0, 200.0, 400.0, 1000.0, 2000.0, 4000.0]))

def main():
    # Register the view. Measurements are only aggregated and exported if
    # they're associated with a registered view.
    stats.stats.view_manager.register_view(LATENCY_VIEW)

    # Create the Stackdriver stats exporter and start exporting metrics in the
    # background, once every 60 seconds by default.
    exporter = stats_exporter.new_stats_exporter()
    print('Exporting stats to project "{}"'
          .format(exporter.options.project_id))

    # Register exporter to the view manager.
    stats.stats.view_manager.register_exporter(exporter)

    # Record 100 fake latency values between 0 and 5 seconds.
    for num in range(100):
        ms = random() * 5 * 1000

        mmap = stats.stats.stats_recorder.new_measurement_map()
        mmap.measure_float_put(LATENCY_MS, ms)
        mmap.record()

        print("Fake latency recorded ({}: {})".format(num, ms))

    # Keep the thread alive long enough for the exporter to export at least
    # once.
    time.sleep(65)

if __name__ == '__main__':
    main()

A seguir

Para pesquisar e filtrar amostras de código de outros produtos do Google Cloud, consulte Navegador de amostra do Google Cloud.