Abilitazione di metriche personalizzate definite dall'utente per la scalabilità automatica del pod orizzontale

Questo documento descrive come configurare le metriche definite dall'utente per il pod orizzontale di scalabilità automatica (HPA) in Google Distributed Cloud.

Questa pagina è rivolta agli amministratori, agli architetti e agli operatori che ottimizzare l'architettura dei sistemi e le risorse per garantire il costo totale più basso la proprietà della propria azienda o unità aziendale, e pianificare la capacità le esigenze dell'infrastruttura. Per saperne di più sui ruoli comuni e sulle attività di esempio che nei contenuti di Google Cloud, consulta Ruoli e attività utente comuni di GKE Enterprise.

Esegui il deployment di Prometheus e dell'adattatore delle metriche

In questa sezione eseguirai il deployment di Prometheus eseguire lo scraping delle metriche definite dall'utente e adattatore-prometheus per l'API Kubernetes Custom Metrics con Prometheus come backend.

Salva i seguenti manifest in un file denominato custom-metrics-adapter.yaml.

Contenuti del file manifest per Prometheus e Metrics Adapter

# Copyright 2018 Google Inc
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#      http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

apiVersion: v1
kind: ServiceAccount
metadata:
  name: stackdriver-prometheus
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: stackdriver-prometheus
  namespace: kube-system
rules:
- apiGroups:
  - ""
  resources:
  - nodes
  - services
  - endpoints
  - pods
  verbs:
  - get
  - list
  - watch
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: stackdriver-prometheus
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: stackdriver-prometheus
subjects:
- kind: ServiceAccount
  name: stackdriver-prometheus
  namespace: kube-system
---
apiVersion: v1
kind: Service
metadata:
  name: stackdriver-prometheus-app
  namespace: kube-system
  labels:
    app: stackdriver-prometheus-app
spec:
  clusterIP: "None"
  ports:
    - name: http
      port: 9090
      protocol: TCP
      targetPort: 9090
  sessionAffinity: ClientIP
  selector:
    app: stackdriver-prometheus-app
---
apiVersion: apps/v1
kind: Deployment
metadata:
  name: stackdriver-prometheus-app
  namespace: kube-system
  labels:
    app: stackdriver-prometheus-app
spec:
  replicas: 1
  selector:
    matchLabels:
      app: stackdriver-prometheus-app
  template:
    metadata:
      labels:
        app: stackdriver-prometheus-app
    spec:
      serviceAccount: stackdriver-prometheus
      containers:
      - name: prometheus-server
        image: prom/prometheus:v2.45.0
        args:
        - "--config.file=/etc/prometheus/config/prometheus.yaml"
        - "--storage.tsdb.path=/data"
        - "--storage.tsdb.retention.time=2h"
        ports:
        - name: prometheus
          containerPort: 9090
        readinessProbe:
          httpGet:
            path: /-/ready
            port: 9090
          periodSeconds: 5
          timeoutSeconds: 3
          # Allow up to 10m on startup for data recovery
          failureThreshold: 120
        livenessProbe:
          httpGet:
            path: /-/healthy
            port: 9090
          periodSeconds: 5
          timeoutSeconds: 3
          failureThreshold: 6
        resources:
          requests:
            cpu: 250m
            memory: 500Mi
        volumeMounts:
        - name: config-volume
          mountPath: /etc/prometheus/config
        - name: stackdriver-prometheus-app-data
          mountPath: /data
      volumes:
      - name: config-volume
        configMap:
          name: stackdriver-prometheus-app
      - name: stackdriver-prometheus-app-data
        emptyDir: {}
      terminationGracePeriodSeconds: 300
      nodeSelector:
        kubernetes.io/os: linux
---
apiVersion: v1
data:
  prometheus.yaml: |
    global:
      scrape_interval: 1m
    rule_files:
    - /etc/config/rules.yaml
    - /etc/config/alerts.yaml
    scrape_configs:
    - job_name: prometheus-io-endpoints
      kubernetes_sd_configs:
      - role: endpoints
      relabel_configs:
      - action: keep
        regex: true
        source_labels:
        - __meta_kubernetes_service_annotation_prometheus_io_scrape
      - action: replace
        regex: (.+)
        source_labels:
        - __meta_kubernetes_service_annotation_prometheus_io_path
        target_label: __metrics_path__
      - action: replace
        regex: (https?)
        source_labels:
        - __meta_kubernetes_service_annotation_prometheus_io_scheme
        target_label: __scheme__
      - action: replace
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        source_labels:
        - __address__
        - __meta_kubernetes_service_annotation_prometheus_io_port
        target_label: __address__
      - action: replace
        source_labels:
        - __meta_kubernetes_namespace
        target_label: namespace
      - action: replace
        source_labels:
        - __meta_kubernetes_pod_name
        target_label: pod
      - action: keep
        regex: (.+)
        source_labels:
        - __meta_kubernetes_endpoint_port_name
    - job_name: prometheus-io-services
      kubernetes_sd_configs:
      - role: service
      metrics_path: /probe
      params:
        module:
        - http_2xx
      relabel_configs:
      - action: replace
        source_labels:
        - __address__
        target_label: __param_target
      - action: replace
        replacement: blackbox
        target_label: __address__
      - action: keep
        regex: true
        source_labels:
        - __meta_kubernetes_service_annotation_prometheus_io_probe
      - action: replace
        source_labels:
        - __meta_kubernetes_namespace
        target_label: namespace
      - action: replace
        source_labels:
        - __meta_kubernetes_pod_name
        target_label: pod
    - job_name: prometheus-io-pods
      kubernetes_sd_configs:
      - role: pod
      relabel_configs:
      - action: keep
        regex: true
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_scrape
      - action: replace
        regex: (.+)
        source_labels:
        - __meta_kubernetes_pod_annotation_prometheus_io_path
        target_label: __metrics_path__
      - action: replace
        regex: ([^:]+)(?::\d+)?;(\d+)
        replacement: $1:$2
        source_labels:
        - __address__
        - __meta_kubernetes_pod_annotation_prometheus_io_port
        target_label: __address__
      - action: replace
        source_labels:
        - __meta_kubernetes_namespace
        target_label: namespace
      - action: replace
        source_labels:
        - __meta_kubernetes_pod_name
        target_label: pod
kind: ConfigMap
metadata:
  name: stackdriver-prometheus-app
  namespace: kube-system
---

# The main section of custom metrics adapter.
kind: ServiceAccount
apiVersion: v1
metadata:
  name: custom-metrics-apiserver
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: custom-metrics:system:auth-delegator
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:auth-delegator
subjects:
- kind: ServiceAccount
  name: custom-metrics-apiserver
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: custom-metrics-server-resources
rules:
- apiGroups:
  - custom.metrics.k8s.io
  resources: ["*"]
  verbs: ["*"]
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  name: custom-metrics-resource-reader
rules:
- apiGroups:
  - ""
  resources:
  - nodes
  - namespaces
  - pods
  - services
  verbs:
  - get
  - watch
  - list
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: custom-metrics-resource-reader
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: custom-metrics-resource-reader
subjects:
- kind: ServiceAccount
  name: custom-metrics-apiserver
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
  name: custom-metrics-auth-reader
  namespace: kube-system
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: Role
  name: extension-apiserver-authentication-reader
subjects:
- kind: ServiceAccount
  name: custom-metrics-apiserver
  namespace: kube-system
---
apiVersion: v1
kind: ConfigMap
metadata:
  name: adapter-config
  namespace: kube-system
data:
  config.yaml: |
    rules:
    default: false
      # fliter all metrics
    - seriesQuery: '{pod=~".+"}'
      seriesFilters: []
      resources:
        # resource name is mapped as it is. ex. namespace -> namespace
        template: <<.Resource>>
      name:
        matches: ^(.*)$
        as: ""
      # Aggregate metric on resource level
      metricsQuery: sum(<<.Series>>{<<.LabelMatchers>>}) by (<<.GroupBy>>)
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: custom-metrics-apiserver
  name: custom-metrics-apiserver
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      app: custom-metrics-apiserver
  template:
    metadata:
      labels:
        app: custom-metrics-apiserver
      name: custom-metrics-apiserver
    spec:
      serviceAccountName: custom-metrics-apiserver
      containers:
      - name: custom-metrics-apiserver
        resources:
          requests:
            cpu: 15m
            memory: 20Mi
          limits:
            cpu: 100m
            memory: 150Mi
        image: registry.k8s.io/prometheus-adapter/prometheus-adapter:v0.11.0
        args:
        - /adapter
        - --cert-dir=/var/run/serving-cert
        - --secure-port=6443
        - --prometheus-url=http://stackdriver-prometheus-app.kube-system.svc:9090/
        - --metrics-relist-interval=1m
        - --config=/etc/adapter/config.yaml
        ports:
        - containerPort: 6443
        volumeMounts:
        - name: serving-cert
          mountPath: /var/run/serving-cert
        - mountPath: /etc/adapter/
          name: config
          readOnly: true
      nodeSelector:
        kubernetes.io/os: linux
      volumes:
      - name: serving-cert
        emptyDir:
          medium: Memory
      - name: config
        configMap:
          name: adapter-config
---
apiVersion: v1
kind: Service
metadata:
  name: custom-metrics-apiserver
  namespace: kube-system
spec:
  ports:
  - port: 443
    targetPort: 6443
  selector:
    app: custom-metrics-apiserver
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
  name: v1beta1.custom.metrics.k8s.io
spec:
  service:
    name: custom-metrics-apiserver
    namespace: kube-system
  group: custom.metrics.k8s.io
  version: v1beta1
  insecureSkipTLSVerify: true
  groupPriorityMinimum: 100
  versionPriority: 100
---
apiVersion: apiregistration.k8s.io/v1
kind: APIService
metadata:
  name: v1beta2.custom.metrics.k8s.io
spec:
  service:
    name: custom-metrics-apiserver
    namespace: kube-system
  group: custom.metrics.k8s.io
  version: v1beta2
  insecureSkipTLSVerify: true
  groupPriorityMinimum: 100
  versionPriority: 100
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: hpa-controller-custom-metrics
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: custom-metrics-server-resources
subjects:
- kind: ServiceAccount
  name: horizontal-pod-autoscaler
  namespace: kube-system

Crea il deployment e il servizio:

kubectl --kubeconfig USER_CLUSTER_KUBECONFIG apply -f custom-metrics-adapter.yaml

Il passaggio successivo consiste nell'annotare l'applicazione dell'utente per la raccolta delle metriche.

Annota un'applicazione utente per la raccolta delle metriche

Per annotare un'applicazione utente da sottoporre a scraping e i log inviati a Cloud Monitoring, devi aggiungere annotations corrispondente ai metadati per il servizio, il pod e gli endpoint.

  metadata:
    name: "example-monitoring"
    namespace: "default"
    annotations:
      prometheus.io/scrape: "true"
      prometheus.io/path: "" - Overriding metrics path (default "/metrics")
  

Esegui il deployment di un'applicazione utente di esempio

In questa sezione esegui il deployment di un'applicazione di esempio con log e metriche compatibili con Prometheus.

  1. Salva i seguenti manifest di servizio e deployment in un file denominato my-app.yaml. Nota che il servizio ha l'annotazioneprometheus.io/scrape: "true":

    kind: Service
    apiVersion: v1
    metadata:
      name: "example-monitoring"
      namespace: "default"
      annotations:
        prometheus.io/scrape: "true"
    spec:
      selector:
        app: "example-monitoring"
      ports:
        - name: http
          port: 9090
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: "example-monitoring"
      namespace: "default"
      labels:
        app: "example-monitoring"
    spec:
      replicas: 1
      selector: 
        matchLabels:
          app: "example-monitoring"
      template: 
        metadata: 
          labels:
            app: "example-monitoring"
        spec:
          containers:
          - image: gcr.io/google-samples/prometheus-dummy-exporter:v0.2.0
            name: prometheus-example-exporter
            command:
            - ./prometheus-dummy-exporter
            args:
            - --metric-name=example_monitoring_up
            - --metric-value=1
            - --port=9090
            resources:
              requests:
                cpu: 100m
    
  2. Crea il deployment e il servizio:

    kubectl --kubeconfig USER_CLUSTER_KUBECONFIG apply -f my-app.yaml
    

Utilizzare le metriche personalizzate in HPA

Esegui il deployment dell'oggetto HPA per utilizzare la metrica esposta nel passaggio precedente. Consulta Scalabilità automatica su più metriche e metriche personalizzate per informazioni più avanzate sui diversi tipi di metriche personalizzate.

apiVersion: autoscaling/v2
kind: HorizontalPodAutoscaler
metadata:
  name: example-monitoring-hpa
  namespace: default
spec:
  scaleTargetRef:
    apiVersion: apps/v1
    kind: Deployment
    name: example-monitoring
  minReplicas: 1
  maxReplicas: 5
  metrics:
  - type: Pods
    pods:
      metric:
        name: example_monitoring_up
      target:
        type: AverageValue
        averageValue: 20

La metrica Tipo di pod ha un selettore di metriche predefinito per le etichette dei pod di destinazione, che è il modo in cui funziona kube-controller-manager. In questo esempio, puoi eseguire query sulla metrica example_monitoring_up con un selettore di {matchLabels: {app: example-monitoring}} poiché sono disponibili nei pod di destinazione. Qualsiasi altro selettore specificato viene aggiunto all'elenco. Per evitare il selettore predefinito, puoi rimuovere le etichette sul pod di destinazione o utilizzare la metrica Tipo di oggetto.

Verificare che le metriche dell'applicazione definite dall'utente siano utilizzate dall'HPA

Verifica che le metriche dell'applicazione definite dall'utente vengano utilizzate dall'HPA:

kubectl --kubeconfig=USER_CLUSTER_KUBECONFIG describe hpa example-monitoring-hpa

L'output sarà simile al seguente:

  Name:               example-monitoring-hpa
  Namespace:          default
  Labels:             
  Annotations:        autoscaling.alpha.kubernetes.io/conditions:
                        [{"type":"AbleToScale","status":"True","lastTransitionTime":"2023-08-23T22:07:24Z","reason":"ReadyForNewScale","message":"recommended size...
                      autoscaling.alpha.kubernetes.io/current-metrics: [{"type":"Pods","pods":{"metricName":"example_monitoring_up","currentAverageValue":"1"}}]
                      autoscaling.alpha.kubernetes.io/metrics: [{"type":"Pods","pods":{"metricName":"example_monitoring_up","targetAverageValue":"20"}}]
  CreationTimestamp:  Wed, 23 Aug 2023 22:07:09 +0000
  Reference:          Deployment/example-monitoring
  Min replicas:       1
  Max replicas:       5
  Deployment pods:    1 current / 1 desired
  

Costi

L'uso di metriche personalizzate per HPA non comporta ulteriori utilizzi di Cloud Monitoring addebiti. I pod per l'abilitazione delle metriche personalizzate consumano CPU e memoria aggiuntive in base alla quantità di metriche estratto.