public static final class VertexCustomConfig.Builder extends GeneratedMessageV3.Builder<VertexCustomConfig.Builder> implements VertexCustomConfigOrBuilder
Message describing VertexCustomConfig.
Protobuf type google.cloud.visionai.v1.VertexCustomConfig
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > VertexCustomConfig.BuilderImplements
VertexCustomConfigOrBuilderInherited Members
Static Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Returns | |
---|---|
Type | Description |
Descriptor |
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public VertexCustomConfig.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
value |
Object |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
build()
public VertexCustomConfig build()
Returns | |
---|---|
Type | Description |
VertexCustomConfig |
buildPartial()
public VertexCustomConfig buildPartial()
Returns | |
---|---|
Type | Description |
VertexCustomConfig |
clear()
public VertexCustomConfig.Builder clear()
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
clearAttachApplicationMetadata()
public VertexCustomConfig.Builder clearAttachApplicationMetadata()
If true, the prediction request received by custom model will also contain metadata with the following schema: 'appPlatformMetadata': { 'ingestionTime': DOUBLE; (UNIX timestamp) 'application': STRING; 'instanceId': STRING; 'node': STRING; 'processor': STRING; }
bool attach_application_metadata = 4;
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
This builder for chaining. |
clearDedicatedResources()
public VertexCustomConfig.Builder clearDedicatedResources()
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
clearDynamicConfigInputTopic()
public VertexCustomConfig.Builder clearDynamicConfigInputTopic()
Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }
optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
This builder for chaining. |
clearField(Descriptors.FieldDescriptor field)
public VertexCustomConfig.Builder clearField(Descriptors.FieldDescriptor field)
Parameter | |
---|---|
Name | Description |
field |
FieldDescriptor |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
clearMaxPredictionFps()
public VertexCustomConfig.Builder clearMaxPredictionFps()
The max prediction frame per second. This attribute sets how fast the operator sends prediction requests to Vertex AI endpoint. Default value is 0, which means there is no max prediction fps limit. The operator sends prediction requests at input fps.
int32 max_prediction_fps = 1;
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
This builder for chaining. |
clearOneof(Descriptors.OneofDescriptor oneof)
public VertexCustomConfig.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter | |
---|---|
Name | Description |
oneof |
OneofDescriptor |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
clearPostProcessingCloudFunction()
public VertexCustomConfig.Builder clearPostProcessingCloudFunction()
If not empty, the prediction result will be sent to the specified cloud function for post processing.
- The cloud function will receive AppPlatformCloudFunctionRequest where the annotations field will be the json format of proto PredictResponse.
- The cloud function should return AppPlatformCloudFunctionResponse with PredictResponse stored in the annotations field.
- To drop the prediction output, simply clear the payload field in the returned AppPlatformCloudFunctionResponse.
string post_processing_cloud_function = 3;
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
This builder for chaining. |
clone()
public VertexCustomConfig.Builder clone()
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
getAttachApplicationMetadata()
public boolean getAttachApplicationMetadata()
If true, the prediction request received by custom model will also contain metadata with the following schema: 'appPlatformMetadata': { 'ingestionTime': DOUBLE; (UNIX timestamp) 'application': STRING; 'instanceId': STRING; 'node': STRING; 'processor': STRING; }
bool attach_application_metadata = 4;
Returns | |
---|---|
Type | Description |
boolean |
The attachApplicationMetadata. |
getDedicatedResources()
public DedicatedResources getDedicatedResources()
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;
Returns | |
---|---|
Type | Description |
DedicatedResources |
The dedicatedResources. |
getDedicatedResourcesBuilder()
public DedicatedResources.Builder getDedicatedResourcesBuilder()
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;
Returns | |
---|---|
Type | Description |
DedicatedResources.Builder |
getDedicatedResourcesOrBuilder()
public DedicatedResourcesOrBuilder getDedicatedResourcesOrBuilder()
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;
Returns | |
---|---|
Type | Description |
DedicatedResourcesOrBuilder |
getDefaultInstanceForType()
public VertexCustomConfig getDefaultInstanceForType()
Returns | |
---|---|
Type | Description |
VertexCustomConfig |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()
Returns | |
---|---|
Type | Description |
Descriptor |
getDynamicConfigInputTopic()
public String getDynamicConfigInputTopic()
Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }
optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];
Returns | |
---|---|
Type | Description |
String |
The dynamicConfigInputTopic. |
getDynamicConfigInputTopicBytes()
public ByteString getDynamicConfigInputTopicBytes()
Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }
optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];
Returns | |
---|---|
Type | Description |
ByteString |
The bytes for dynamicConfigInputTopic. |
getMaxPredictionFps()
public int getMaxPredictionFps()
The max prediction frame per second. This attribute sets how fast the operator sends prediction requests to Vertex AI endpoint. Default value is 0, which means there is no max prediction fps limit. The operator sends prediction requests at input fps.
int32 max_prediction_fps = 1;
Returns | |
---|---|
Type | Description |
int |
The maxPredictionFps. |
getPostProcessingCloudFunction()
public String getPostProcessingCloudFunction()
If not empty, the prediction result will be sent to the specified cloud function for post processing.
- The cloud function will receive AppPlatformCloudFunctionRequest where the annotations field will be the json format of proto PredictResponse.
- The cloud function should return AppPlatformCloudFunctionResponse with PredictResponse stored in the annotations field.
- To drop the prediction output, simply clear the payload field in the returned AppPlatformCloudFunctionResponse.
string post_processing_cloud_function = 3;
Returns | |
---|---|
Type | Description |
String |
The postProcessingCloudFunction. |
getPostProcessingCloudFunctionBytes()
public ByteString getPostProcessingCloudFunctionBytes()
If not empty, the prediction result will be sent to the specified cloud function for post processing.
- The cloud function will receive AppPlatformCloudFunctionRequest where the annotations field will be the json format of proto PredictResponse.
- The cloud function should return AppPlatformCloudFunctionResponse with PredictResponse stored in the annotations field.
- To drop the prediction output, simply clear the payload field in the returned AppPlatformCloudFunctionResponse.
string post_processing_cloud_function = 3;
Returns | |
---|---|
Type | Description |
ByteString |
The bytes for postProcessingCloudFunction. |
hasDedicatedResources()
public boolean hasDedicatedResources()
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;
Returns | |
---|---|
Type | Description |
boolean |
Whether the dedicatedResources field is set. |
hasDynamicConfigInputTopic()
public boolean hasDynamicConfigInputTopic()
Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }
optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];
Returns | |
---|---|
Type | Description |
boolean |
Whether the dynamicConfigInputTopic field is set. |
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns | |
---|---|
Type | Description |
FieldAccessorTable |
isInitialized()
public final boolean isInitialized()
Returns | |
---|---|
Type | Description |
boolean |
mergeDedicatedResources(DedicatedResources value)
public VertexCustomConfig.Builder mergeDedicatedResources(DedicatedResources value)
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;
Parameter | |
---|---|
Name | Description |
value |
DedicatedResources |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
mergeFrom(VertexCustomConfig other)
public VertexCustomConfig.Builder mergeFrom(VertexCustomConfig other)
Parameter | |
---|---|
Name | Description |
other |
VertexCustomConfig |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public VertexCustomConfig.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters | |
---|---|
Name | Description |
input |
CodedInputStream |
extensionRegistry |
ExtensionRegistryLite |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
Exceptions | |
---|---|
Type | Description |
IOException |
mergeFrom(Message other)
public VertexCustomConfig.Builder mergeFrom(Message other)
Parameter | |
---|---|
Name | Description |
other |
Message |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final VertexCustomConfig.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields |
UnknownFieldSet |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
setAttachApplicationMetadata(boolean value)
public VertexCustomConfig.Builder setAttachApplicationMetadata(boolean value)
If true, the prediction request received by custom model will also contain metadata with the following schema: 'appPlatformMetadata': { 'ingestionTime': DOUBLE; (UNIX timestamp) 'application': STRING; 'instanceId': STRING; 'node': STRING; 'processor': STRING; }
bool attach_application_metadata = 4;
Parameter | |
---|---|
Name | Description |
value |
boolean The attachApplicationMetadata to set. |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
This builder for chaining. |
setDedicatedResources(DedicatedResources value)
public VertexCustomConfig.Builder setDedicatedResources(DedicatedResources value)
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;
Parameter | |
---|---|
Name | Description |
value |
DedicatedResources |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
setDedicatedResources(DedicatedResources.Builder builderForValue)
public VertexCustomConfig.Builder setDedicatedResources(DedicatedResources.Builder builderForValue)
A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.
.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;
Parameter | |
---|---|
Name | Description |
builderForValue |
DedicatedResources.Builder |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
setDynamicConfigInputTopic(String value)
public VertexCustomConfig.Builder setDynamicConfigInputTopic(String value)
Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }
optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];
Parameter | |
---|---|
Name | Description |
value |
String The dynamicConfigInputTopic to set. |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
This builder for chaining. |
setDynamicConfigInputTopicBytes(ByteString value)
public VertexCustomConfig.Builder setDynamicConfigInputTopicBytes(ByteString value)
Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }
optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];
Parameter | |
---|---|
Name | Description |
value |
ByteString The bytes for dynamicConfigInputTopic to set. |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
This builder for chaining. |
setField(Descriptors.FieldDescriptor field, Object value)
public VertexCustomConfig.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
value |
Object |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
setMaxPredictionFps(int value)
public VertexCustomConfig.Builder setMaxPredictionFps(int value)
The max prediction frame per second. This attribute sets how fast the operator sends prediction requests to Vertex AI endpoint. Default value is 0, which means there is no max prediction fps limit. The operator sends prediction requests at input fps.
int32 max_prediction_fps = 1;
Parameter | |
---|---|
Name | Description |
value |
int The maxPredictionFps to set. |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
This builder for chaining. |
setPostProcessingCloudFunction(String value)
public VertexCustomConfig.Builder setPostProcessingCloudFunction(String value)
If not empty, the prediction result will be sent to the specified cloud function for post processing.
- The cloud function will receive AppPlatformCloudFunctionRequest where the annotations field will be the json format of proto PredictResponse.
- The cloud function should return AppPlatformCloudFunctionResponse with PredictResponse stored in the annotations field.
- To drop the prediction output, simply clear the payload field in the returned AppPlatformCloudFunctionResponse.
string post_processing_cloud_function = 3;
Parameter | |
---|---|
Name | Description |
value |
String The postProcessingCloudFunction to set. |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
This builder for chaining. |
setPostProcessingCloudFunctionBytes(ByteString value)
public VertexCustomConfig.Builder setPostProcessingCloudFunctionBytes(ByteString value)
If not empty, the prediction result will be sent to the specified cloud function for post processing.
- The cloud function will receive AppPlatformCloudFunctionRequest where the annotations field will be the json format of proto PredictResponse.
- The cloud function should return AppPlatformCloudFunctionResponse with PredictResponse stored in the annotations field.
- To drop the prediction output, simply clear the payload field in the returned AppPlatformCloudFunctionResponse.
string post_processing_cloud_function = 3;
Parameter | |
---|---|
Name | Description |
value |
ByteString The bytes for postProcessingCloudFunction to set. |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
This builder for chaining. |
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public VertexCustomConfig.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
index |
int |
value |
Object |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |
setUnknownFields(UnknownFieldSet unknownFields)
public final VertexCustomConfig.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields |
UnknownFieldSet |
Returns | |
---|---|
Type | Description |
VertexCustomConfig.Builder |