Class VertexCustomConfig.Builder (0.1.0)

See more code actions.
public static final class VertexCustomConfig.Builder extends GeneratedMessageV3.Builder<VertexCustomConfig.Builder> implements VertexCustomConfigOrBuilder

Message describing VertexCustomConfig.

Protobuf type google.cloud.visionai.v1.VertexCustomConfig

com.google.protobuf.GeneratedMessageV3.Builder.getUnknownFieldSetBuilder()
com.google.protobuf.GeneratedMessageV3.Builder.internalGetMapFieldReflection(int)
com.google.protobuf.GeneratedMessageV3.Builder.internalGetMutableMapFieldReflection(int)
com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownLengthDelimitedField(int,com.google.protobuf.ByteString)
com.google.protobuf.GeneratedMessageV3.Builder.mergeUnknownVarintField(int,int)
com.google.protobuf.GeneratedMessageV3.Builder.parseUnknownField(com.google.protobuf.CodedInputStream,com.google.protobuf.ExtensionRegistryLite,int)
com.google.protobuf.GeneratedMessageV3.Builder.setUnknownFieldSetBuilder(com.google.protobuf.UnknownFieldSet.Builder)

Static Methods

getDescriptor()

public static final Descriptors.Descriptor getDescriptor()
Returns
Type Description
Descriptor

Methods

addRepeatedField(Descriptors.FieldDescriptor field, Object value)

public VertexCustomConfig.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters
Name Description
field FieldDescriptor
value Object
Returns
Type Description
VertexCustomConfig.Builder
Overrides

build()

public VertexCustomConfig build()
Returns
Type Description
VertexCustomConfig

buildPartial()

public VertexCustomConfig buildPartial()
Returns
Type Description
VertexCustomConfig

clear()

public VertexCustomConfig.Builder clear()
Returns
Type Description
VertexCustomConfig.Builder
Overrides

clearAttachApplicationMetadata()

public VertexCustomConfig.Builder clearAttachApplicationMetadata()

If true, the prediction request received by custom model will also contain metadata with the following schema: 'appPlatformMetadata': { 'ingestionTime': DOUBLE; (UNIX timestamp) 'application': STRING; 'instanceId': STRING; 'node': STRING; 'processor': STRING; }

bool attach_application_metadata = 4;

Returns
Type Description
VertexCustomConfig.Builder

This builder for chaining.

clearDedicatedResources()

public VertexCustomConfig.Builder clearDedicatedResources()

A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.

.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;

Returns
Type Description
VertexCustomConfig.Builder

clearDynamicConfigInputTopic()

public VertexCustomConfig.Builder clearDynamicConfigInputTopic()

Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }

optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
VertexCustomConfig.Builder

This builder for chaining.

clearField(Descriptors.FieldDescriptor field)

public VertexCustomConfig.Builder clearField(Descriptors.FieldDescriptor field)
Parameter
Name Description
field FieldDescriptor
Returns
Type Description
VertexCustomConfig.Builder
Overrides

clearMaxPredictionFps()

public VertexCustomConfig.Builder clearMaxPredictionFps()

The max prediction frame per second. This attribute sets how fast the operator sends prediction requests to Vertex AI endpoint. Default value is 0, which means there is no max prediction fps limit. The operator sends prediction requests at input fps.

int32 max_prediction_fps = 1;

Returns
Type Description
VertexCustomConfig.Builder

This builder for chaining.

clearOneof(Descriptors.OneofDescriptor oneof)

public VertexCustomConfig.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter
Name Description
oneof OneofDescriptor
Returns
Type Description
VertexCustomConfig.Builder
Overrides

clearPostProcessingCloudFunction()

public VertexCustomConfig.Builder clearPostProcessingCloudFunction()

If not empty, the prediction result will be sent to the specified cloud function for post processing.

  • The cloud function will receive AppPlatformCloudFunctionRequest where the annotations field will be the json format of proto PredictResponse.
  • The cloud function should return AppPlatformCloudFunctionResponse with PredictResponse stored in the annotations field.
  • To drop the prediction output, simply clear the payload field in the returned AppPlatformCloudFunctionResponse.

string post_processing_cloud_function = 3;

Returns
Type Description
VertexCustomConfig.Builder

This builder for chaining.

clone()

public VertexCustomConfig.Builder clone()
Returns
Type Description
VertexCustomConfig.Builder
Overrides

getAttachApplicationMetadata()

public boolean getAttachApplicationMetadata()

If true, the prediction request received by custom model will also contain metadata with the following schema: 'appPlatformMetadata': { 'ingestionTime': DOUBLE; (UNIX timestamp) 'application': STRING; 'instanceId': STRING; 'node': STRING; 'processor': STRING; }

bool attach_application_metadata = 4;

Returns
Type Description
boolean

The attachApplicationMetadata.

getDedicatedResources()

public DedicatedResources getDedicatedResources()

A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.

.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;

Returns
Type Description
DedicatedResources

The dedicatedResources.

getDedicatedResourcesBuilder()

public DedicatedResources.Builder getDedicatedResourcesBuilder()

A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.

.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;

Returns
Type Description
DedicatedResources.Builder

getDedicatedResourcesOrBuilder()

public DedicatedResourcesOrBuilder getDedicatedResourcesOrBuilder()

A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.

.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;

Returns
Type Description
DedicatedResourcesOrBuilder

getDefaultInstanceForType()

public VertexCustomConfig getDefaultInstanceForType()
Returns
Type Description
VertexCustomConfig

getDescriptorForType()

public Descriptors.Descriptor getDescriptorForType()
Returns
Type Description
Descriptor
Overrides

getDynamicConfigInputTopic()

public String getDynamicConfigInputTopic()

Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }

optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
String

The dynamicConfigInputTopic.

getDynamicConfigInputTopicBytes()

public ByteString getDynamicConfigInputTopicBytes()

Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }

optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
ByteString

The bytes for dynamicConfigInputTopic.

getMaxPredictionFps()

public int getMaxPredictionFps()

The max prediction frame per second. This attribute sets how fast the operator sends prediction requests to Vertex AI endpoint. Default value is 0, which means there is no max prediction fps limit. The operator sends prediction requests at input fps.

int32 max_prediction_fps = 1;

Returns
Type Description
int

The maxPredictionFps.

getPostProcessingCloudFunction()

public String getPostProcessingCloudFunction()

If not empty, the prediction result will be sent to the specified cloud function for post processing.

  • The cloud function will receive AppPlatformCloudFunctionRequest where the annotations field will be the json format of proto PredictResponse.
  • The cloud function should return AppPlatformCloudFunctionResponse with PredictResponse stored in the annotations field.
  • To drop the prediction output, simply clear the payload field in the returned AppPlatformCloudFunctionResponse.

string post_processing_cloud_function = 3;

Returns
Type Description
String

The postProcessingCloudFunction.

getPostProcessingCloudFunctionBytes()

public ByteString getPostProcessingCloudFunctionBytes()

If not empty, the prediction result will be sent to the specified cloud function for post processing.

  • The cloud function will receive AppPlatformCloudFunctionRequest where the annotations field will be the json format of proto PredictResponse.
  • The cloud function should return AppPlatformCloudFunctionResponse with PredictResponse stored in the annotations field.
  • To drop the prediction output, simply clear the payload field in the returned AppPlatformCloudFunctionResponse.

string post_processing_cloud_function = 3;

Returns
Type Description
ByteString

The bytes for postProcessingCloudFunction.

hasDedicatedResources()

public boolean hasDedicatedResources()

A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.

.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;

Returns
Type Description
boolean

Whether the dedicatedResources field is set.

hasDynamicConfigInputTopic()

public boolean hasDynamicConfigInputTopic()

Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }

optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];

Returns
Type Description
boolean

Whether the dynamicConfigInputTopic field is set.

internalGetFieldAccessorTable()

protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns
Type Description
FieldAccessorTable
Overrides

isInitialized()

public final boolean isInitialized()
Returns
Type Description
boolean
Overrides

mergeDedicatedResources(DedicatedResources value)

public VertexCustomConfig.Builder mergeDedicatedResources(DedicatedResources value)

A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.

.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;

Parameter
Name Description
value DedicatedResources
Returns
Type Description
VertexCustomConfig.Builder

mergeFrom(VertexCustomConfig other)

public VertexCustomConfig.Builder mergeFrom(VertexCustomConfig other)
Parameter
Name Description
other VertexCustomConfig
Returns
Type Description
VertexCustomConfig.Builder

mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)

public VertexCustomConfig.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters
Name Description
input CodedInputStream
extensionRegistry ExtensionRegistryLite
Returns
Type Description
VertexCustomConfig.Builder
Overrides
Exceptions
Type Description
IOException

mergeFrom(Message other)

public VertexCustomConfig.Builder mergeFrom(Message other)
Parameter
Name Description
other Message
Returns
Type Description
VertexCustomConfig.Builder
Overrides

mergeUnknownFields(UnknownFieldSet unknownFields)

public final VertexCustomConfig.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter
Name Description
unknownFields UnknownFieldSet
Returns
Type Description
VertexCustomConfig.Builder
Overrides

setAttachApplicationMetadata(boolean value)

public VertexCustomConfig.Builder setAttachApplicationMetadata(boolean value)

If true, the prediction request received by custom model will also contain metadata with the following schema: 'appPlatformMetadata': { 'ingestionTime': DOUBLE; (UNIX timestamp) 'application': STRING; 'instanceId': STRING; 'node': STRING; 'processor': STRING; }

bool attach_application_metadata = 4;

Parameter
Name Description
value boolean

The attachApplicationMetadata to set.

Returns
Type Description
VertexCustomConfig.Builder

This builder for chaining.

setDedicatedResources(DedicatedResources value)

public VertexCustomConfig.Builder setDedicatedResources(DedicatedResources value)

A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.

.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;

Parameter
Name Description
value DedicatedResources
Returns
Type Description
VertexCustomConfig.Builder

setDedicatedResources(DedicatedResources.Builder builderForValue)

public VertexCustomConfig.Builder setDedicatedResources(DedicatedResources.Builder builderForValue)

A description of resources that are dedicated to the DeployedModel, and that need a higher degree of manual configuration.

.google.cloud.visionai.v1.DedicatedResources dedicated_resources = 2;

Parameter
Name Description
builderForValue DedicatedResources.Builder
Returns
Type Description
VertexCustomConfig.Builder

setDynamicConfigInputTopic(String value)

public VertexCustomConfig.Builder setDynamicConfigInputTopic(String value)

Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }

optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];

Parameter
Name Description
value String

The dynamicConfigInputTopic to set.

Returns
Type Description
VertexCustomConfig.Builder

This builder for chaining.

setDynamicConfigInputTopicBytes(ByteString value)

public VertexCustomConfig.Builder setDynamicConfigInputTopicBytes(ByteString value)

Optional. By setting the configuration_input_topic, processor will subscribe to given topic, only pub/sub topic is supported now. Example channel: //pubsub.googleapis.com/projects/visionai-testing-stable/topics/test-topic message schema should be: message Message { // The ID of the stream that associates with the application instance. string stream_id = 1; // The target fps. By default, the custom processor will not send any data to the Vertex Prediction container. Note that once the dynamic_config_input_topic is set, max_prediction_fps will not work and be preceded by the fps set inside the topic. int32 fps = 2; }

optional string dynamic_config_input_topic = 6 [(.google.api.field_behavior) = OPTIONAL];

Parameter
Name Description
value ByteString

The bytes for dynamicConfigInputTopic to set.

Returns
Type Description
VertexCustomConfig.Builder

This builder for chaining.

setField(Descriptors.FieldDescriptor field, Object value)

public VertexCustomConfig.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters
Name Description
field FieldDescriptor
value Object
Returns
Type Description
VertexCustomConfig.Builder
Overrides

setMaxPredictionFps(int value)

public VertexCustomConfig.Builder setMaxPredictionFps(int value)

The max prediction frame per second. This attribute sets how fast the operator sends prediction requests to Vertex AI endpoint. Default value is 0, which means there is no max prediction fps limit. The operator sends prediction requests at input fps.

int32 max_prediction_fps = 1;

Parameter
Name Description
value int

The maxPredictionFps to set.

Returns
Type Description
VertexCustomConfig.Builder

This builder for chaining.

setPostProcessingCloudFunction(String value)

public VertexCustomConfig.Builder setPostProcessingCloudFunction(String value)

If not empty, the prediction result will be sent to the specified cloud function for post processing.

  • The cloud function will receive AppPlatformCloudFunctionRequest where the annotations field will be the json format of proto PredictResponse.
  • The cloud function should return AppPlatformCloudFunctionResponse with PredictResponse stored in the annotations field.
  • To drop the prediction output, simply clear the payload field in the returned AppPlatformCloudFunctionResponse.

string post_processing_cloud_function = 3;

Parameter
Name Description
value String

The postProcessingCloudFunction to set.

Returns
Type Description
VertexCustomConfig.Builder

This builder for chaining.

setPostProcessingCloudFunctionBytes(ByteString value)

public VertexCustomConfig.Builder setPostProcessingCloudFunctionBytes(ByteString value)

If not empty, the prediction result will be sent to the specified cloud function for post processing.

  • The cloud function will receive AppPlatformCloudFunctionRequest where the annotations field will be the json format of proto PredictResponse.
  • The cloud function should return AppPlatformCloudFunctionResponse with PredictResponse stored in the annotations field.
  • To drop the prediction output, simply clear the payload field in the returned AppPlatformCloudFunctionResponse.

string post_processing_cloud_function = 3;

Parameter
Name Description
value ByteString

The bytes for postProcessingCloudFunction to set.

Returns
Type Description
VertexCustomConfig.Builder

This builder for chaining.

setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)

public VertexCustomConfig.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters
Name Description
field FieldDescriptor
index int
value Object
Returns
Type Description
VertexCustomConfig.Builder
Overrides

setUnknownFields(UnknownFieldSet unknownFields)

public final VertexCustomConfig.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter
Name Description
unknownFields UnknownFieldSet
Returns
Type Description
VertexCustomConfig.Builder
Overrides