- 0.65.0 (latest)
- 0.64.0
- 0.63.0
- 0.62.0
- 0.60.0
- 0.59.0
- 0.58.0
- 0.57.0
- 0.56.0
- 0.55.0
- 0.54.0
- 0.53.0
- 0.52.0
- 0.51.0
- 0.50.0
- 0.48.0
- 0.47.0
- 0.46.0
- 0.45.0
- 0.44.0
- 0.43.0
- 0.42.0
- 0.41.0
- 0.40.0
- 0.39.0
- 0.38.0
- 0.35.0
- 0.34.0
- 0.33.0
- 0.32.0
- 0.31.0
- 0.30.0
- 0.29.0
- 0.28.0
- 0.27.0
- 0.26.0
- 0.25.0
- 0.24.0
- 0.23.0
- 0.22.0
- 0.20.0
- 0.19.0
- 0.18.0
- 0.17.0
- 0.16.0
- 0.15.0
- 0.14.7
- 0.13.1
- 0.12.1
- 0.11.5
public static final class Generator.ModelParameter.Builder extends GeneratedMessageV3.Builder<Generator.ModelParameter.Builder> implements Generator.ModelParameterOrBuilder
Parameters to be passed to the LLM. If not set, default values will be used.
Protobuf type google.cloud.dialogflow.cx.v3.Generator.ModelParameter
Inheritance
Object > AbstractMessageLite.Builder<MessageType,BuilderType> > AbstractMessage.Builder<BuilderType> > GeneratedMessageV3.Builder > Generator.ModelParameter.BuilderImplements
Generator.ModelParameterOrBuilderStatic Methods
getDescriptor()
public static final Descriptors.Descriptor getDescriptor()
Returns | |
---|---|
Type | Description |
Descriptor |
Methods
addRepeatedField(Descriptors.FieldDescriptor field, Object value)
public Generator.ModelParameter.Builder addRepeatedField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
value |
Object |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
build()
public Generator.ModelParameter build()
Returns | |
---|---|
Type | Description |
Generator.ModelParameter |
buildPartial()
public Generator.ModelParameter buildPartial()
Returns | |
---|---|
Type | Description |
Generator.ModelParameter |
clear()
public Generator.ModelParameter.Builder clear()
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
clearField(Descriptors.FieldDescriptor field)
public Generator.ModelParameter.Builder clearField(Descriptors.FieldDescriptor field)
Parameter | |
---|---|
Name | Description |
field |
FieldDescriptor |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
clearMaxDecodeSteps()
public Generator.ModelParameter.Builder clearMaxDecodeSteps()
The maximum number of tokens to generate.
optional int32 max_decode_steps = 2;
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
This builder for chaining. |
clearOneof(Descriptors.OneofDescriptor oneof)
public Generator.ModelParameter.Builder clearOneof(Descriptors.OneofDescriptor oneof)
Parameter | |
---|---|
Name | Description |
oneof |
OneofDescriptor |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
clearTemperature()
public Generator.ModelParameter.Builder clearTemperature()
The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
optional float temperature = 1;
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
This builder for chaining. |
clearTopK()
public Generator.ModelParameter.Builder clearTopK()
If set, the sampling process in each step is limited to the top_k tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
optional int32 top_k = 4;
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
This builder for chaining. |
clearTopP()
public Generator.ModelParameter.Builder clearTopP()
If set, only the tokens comprising the top top_p probability mass are considered. If both top_p and top_k are set, top_p will be used for further refining candidates selected with top_k. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
optional float top_p = 3;
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
This builder for chaining. |
clone()
public Generator.ModelParameter.Builder clone()
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
getDefaultInstanceForType()
public Generator.ModelParameter getDefaultInstanceForType()
Returns | |
---|---|
Type | Description |
Generator.ModelParameter |
getDescriptorForType()
public Descriptors.Descriptor getDescriptorForType()
Returns | |
---|---|
Type | Description |
Descriptor |
getMaxDecodeSteps()
public int getMaxDecodeSteps()
The maximum number of tokens to generate.
optional int32 max_decode_steps = 2;
Returns | |
---|---|
Type | Description |
int |
The maxDecodeSteps. |
getTemperature()
public float getTemperature()
The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
optional float temperature = 1;
Returns | |
---|---|
Type | Description |
float |
The temperature. |
getTopK()
public int getTopK()
If set, the sampling process in each step is limited to the top_k tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
optional int32 top_k = 4;
Returns | |
---|---|
Type | Description |
int |
The topK. |
getTopP()
public float getTopP()
If set, only the tokens comprising the top top_p probability mass are considered. If both top_p and top_k are set, top_p will be used for further refining candidates selected with top_k. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
optional float top_p = 3;
Returns | |
---|---|
Type | Description |
float |
The topP. |
hasMaxDecodeSteps()
public boolean hasMaxDecodeSteps()
The maximum number of tokens to generate.
optional int32 max_decode_steps = 2;
Returns | |
---|---|
Type | Description |
boolean |
Whether the maxDecodeSteps field is set. |
hasTemperature()
public boolean hasTemperature()
The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
optional float temperature = 1;
Returns | |
---|---|
Type | Description |
boolean |
Whether the temperature field is set. |
hasTopK()
public boolean hasTopK()
If set, the sampling process in each step is limited to the top_k tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
optional int32 top_k = 4;
Returns | |
---|---|
Type | Description |
boolean |
Whether the topK field is set. |
hasTopP()
public boolean hasTopP()
If set, only the tokens comprising the top top_p probability mass are considered. If both top_p and top_k are set, top_p will be used for further refining candidates selected with top_k. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
optional float top_p = 3;
Returns | |
---|---|
Type | Description |
boolean |
Whether the topP field is set. |
internalGetFieldAccessorTable()
protected GeneratedMessageV3.FieldAccessorTable internalGetFieldAccessorTable()
Returns | |
---|---|
Type | Description |
FieldAccessorTable |
isInitialized()
public final boolean isInitialized()
Returns | |
---|---|
Type | Description |
boolean |
mergeFrom(Generator.ModelParameter other)
public Generator.ModelParameter.Builder mergeFrom(Generator.ModelParameter other)
Parameter | |
---|---|
Name | Description |
other |
Generator.ModelParameter |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
public Generator.ModelParameter.Builder mergeFrom(CodedInputStream input, ExtensionRegistryLite extensionRegistry)
Parameters | |
---|---|
Name | Description |
input |
CodedInputStream |
extensionRegistry |
ExtensionRegistryLite |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
Exceptions | |
---|---|
Type | Description |
IOException |
mergeFrom(Message other)
public Generator.ModelParameter.Builder mergeFrom(Message other)
Parameter | |
---|---|
Name | Description |
other |
Message |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
mergeUnknownFields(UnknownFieldSet unknownFields)
public final Generator.ModelParameter.Builder mergeUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields |
UnknownFieldSet |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
setField(Descriptors.FieldDescriptor field, Object value)
public Generator.ModelParameter.Builder setField(Descriptors.FieldDescriptor field, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
value |
Object |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
setMaxDecodeSteps(int value)
public Generator.ModelParameter.Builder setMaxDecodeSteps(int value)
The maximum number of tokens to generate.
optional int32 max_decode_steps = 2;
Parameter | |
---|---|
Name | Description |
value |
int The maxDecodeSteps to set. |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
This builder for chaining. |
setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
public Generator.ModelParameter.Builder setRepeatedField(Descriptors.FieldDescriptor field, int index, Object value)
Parameters | |
---|---|
Name | Description |
field |
FieldDescriptor |
index |
int |
value |
Object |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
setTemperature(float value)
public Generator.ModelParameter.Builder setTemperature(float value)
The temperature used for sampling. Temperature sampling occurs after both topP and topK have been applied. Valid range: [0.0, 1.0] Low temperature = less random. High temperature = more random.
optional float temperature = 1;
Parameter | |
---|---|
Name | Description |
value |
float The temperature to set. |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
This builder for chaining. |
setTopK(int value)
public Generator.ModelParameter.Builder setTopK(int value)
If set, the sampling process in each step is limited to the top_k tokens with highest probabilities. Valid range: [1, 40] or 1000+. Small topK = less random. Large topK = more random.
optional int32 top_k = 4;
Parameter | |
---|---|
Name | Description |
value |
int The topK to set. |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
This builder for chaining. |
setTopP(float value)
public Generator.ModelParameter.Builder setTopP(float value)
If set, only the tokens comprising the top top_p probability mass are considered. If both top_p and top_k are set, top_p will be used for further refining candidates selected with top_k. Valid range: (0.0, 1.0]. Small topP = less random. Large topP = more random.
optional float top_p = 3;
Parameter | |
---|---|
Name | Description |
value |
float The topP to set. |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |
This builder for chaining. |
setUnknownFields(UnknownFieldSet unknownFields)
public final Generator.ModelParameter.Builder setUnknownFields(UnknownFieldSet unknownFields)
Parameter | |
---|---|
Name | Description |
unknownFields |
UnknownFieldSet |
Returns | |
---|---|
Type | Description |
Generator.ModelParameter.Builder |