Ce tutoriel explique comment utiliser Gemini pour Google Cloud, un service pour Google Cloud, afin d'analyser des données. Dans ce tutoriel, vous allez utiliser Gemini dans BigQuery pour analyser et prédire les ventes de produits.
Ce tutoriel suppose que vous connaissez SQL et l’analytique de base de données tâches. Il n'est pas nécessaire de maîtriser les produits Google Cloud. Si vous débutez dans consultez la documentation BigQuery guides de démarrage rapide.
Objectifs
- Utilisez Gemini pour répondre à vos questions sur Google Cloud produits d'analyse de données et cas d'utilisation.
- Demandez à Gemini d'expliquer et de générer des requêtes SQL dans dans BigQuery.
- Créer un modèle de machine learning (ML) pour prédire des périodes ultérieures
Coûts
Ce tutoriel utilise les composants facturables suivants de Google Cloud :
Utilisez le simulateur de coût pour estimer vos coûts en fonction de votre l'utilisation prévue.
Avant de commencer
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
- Assurez-vous d'avoir configuré Gemini dans BigQuery dans votre projet Google Cloud.
Dans la console Google Cloud, accédez à la page BigQuery.
Créer un ensemble de données nommé
bqml_tutorial
. Vous utilisez l'ensemble de données pour stocker la base de données tels que des tables et des modèles.Activer les fonctionnalités Gemini dans BigQuery qui vous devez suivre ce tutoriel:
Pour afficher les fonctionnalités de Gemini dans BigQuery, cliquez sur pen_spark dans la barre d'outils Gemini :
Dans la liste Gemini dans l'éditeur SQL BigQuery, sélectionnez toutes les les options suivantes:
- Saisie semi-automatique
- Génération automatique
- Explication
Pour désactiver les fonctionnalités Gemini dans BigQuery, désélectionnez les fonctionnalités de Gemini que vous souhaitez désactiver.
Utiliser Gemini pour analyser vos données
Gemini peut vous aider à savoir à quelles données vous pouvez accéder analyse et comment analyser ces données.
Avant de pouvoir les interroger, vous devez savoir à quelles données vous avez accès. Toutes les données produit organise et stocke les données différemment. Pour obtenir de l'aide, vous pouvez envoyer à Gemini une instruction en langage naturel (ou une requête), comme "Comment puis-je consulter ?" quels ensembles de données et tables sont disponibles dans BigQuery ?"
Si vous voulez comprendre les caractéristiques des différents systèmes de requête de données, vous pouvez demander à Gemini de fournir des informations spécifiques sur un produit, les éléments suivants:
- "How do I get started with BigQuery?" (Comment me lancer avec BigQuery ?)
- "What are the benefits of using BigQuery for data analysis?" (Quels sont les avantages de BigQuery pour l'analyse de données ?)
- "How does BigQuery handle auto-scaling for queries?" (Comment fonctionne l'autoscaling de BigQuery pour gérer les requêtes ?)
Gemini peut aussi vous fournir des informations sur la façon d'analyser vos données. Pour ce type d'aide, vous pouvez envoyer des requêtes Gemini telles que comme suit:
- Comment créer un modèle de prévision de séries temporelles BigQuery ?"
- "Comment charger différents types de données dans BigQuery ?"
Pour inviter Gemini à répondre à des questions concernant vos données, suivez procédez comme suit:
Dans la console Google Cloud, accédez à la page BigQuery.
Dans la barre d'outils de la console Google Cloud, cliquez sur spark Ouvrez Gemini.
Dans le volet Gemini, saisissez une requête telle que
How do I learn which datasets and tables are available to me in BigQuery?
.Cliquez sur send Envoyer la requête.
Découvrez comment et quand Gemini pour Google Cloud utilise vos données.
Gemini devrait proposer une réponse semblable à celle-ci :
To learn which datasets and tables are available to you in BigQuery, you can use the Google Cloud console, the Google Cloud CLI, or the BigQuery API. ...
Facultatif: Pour réinitialiser l'historique de vos discussions, dans le volet Gemini, cliquez sur l'icône delete, puis sur Réinitialiser la discussion.
Utiliser Gemini pour comprendre et écrire du code SQL dans BigQuery
Gemini peut vous aider à travailler avec le SQL. Par exemple, si vous travaillez avec des requêtes SQL écrites par d'autres personnes, Gemini dans BigQuery peut expliquer une requête complexe en langage clair. Telles peuvent vous aider à comprendre la syntaxe de la requête, le schéma sous-jacent et le contexte commercial.
Demander à Gemini d'expliquer les requêtes SQL dans un ensemble de données de ventes
Pour demander à Gemini d'expliquer un exemple de requête SQL, procédez comme suit : étapes:
Dans la console Google Cloud, accédez à la page BigQuery.
Dans l'éditeur de requête, ouvrez ou collez la requête pour laquelle vous souhaitez obtenir des explications.
Par exemple, vous voudrez peut-être comprendre comment les tableaux de données et les requêtes sont liés à un ensemble de données de vente, et que vous aurez peut-être besoin d'aide pour rédiger des requêtes qui utilisent le jeu de données. Dans l'exemple de requête suivant, vous comprendrez tables, mais d'autres sections de la requête peuvent prendre du temps à analyser et à comprendre.
SELECT u.id as user_id, u.first_name, u.last_name, avg(oi.sale_price) as avg_sale_price FROM `bigquery-public-data.thelook_ecommerce.users` as u JOIN `bigquery-public-data.thelook_ecommerce.order_items` as oi ON u.id = oi.user_id GROUP BY 1,2,3 ORDER BY avg_sale_price DESC LIMIT 10
Mettez en surbrillance la requête que vous voulez que Gemini explique, et puis cliquez sur pen_spark. Expliquer ceci requête.
L'explication de la requête SQL apparaît dans le volet Gemini.
En utilisant l'exemple de requête de l'étape précédente, Gemini renvoie une explication semblable à celle-ci:
The intent of this query is to find the top 10 users by average sale price. The query first joins the users and order_items tables on the user_id column. It then groups the results by user_id , first_name , and last_name, and calculates the average sale price for each group. The results are then ordered by average sale price in descending order, and the top 10 results are returned.
Générer une requête SQL qui regroupe les ventes par jour et par produit
Vous pouvez fournir à Gemini une requête pour générer une requête SQL en fonction du schéma de vos données. Même si vous commencez sans code, une connaissance du schéma de données, ou seulement une connaissance de base de la syntaxe SQL, Gemini peut suggérer une ou plusieurs instructions SQL.
Dans l'exemple suivant, vous allez générer une requête qui liste vos principaux produits pour chaque jour.
Ce type de requête est souvent complexe, mais avec Gemini, vous pouvez
créer automatiquement
une instruction. Vous utiliserez ensuite des tables dans thelook_ecommerce
ensemble de données et demander à Gemini de générer une requête pour calculer les ventes
par article et par nom de produit.
Pour demander à Gemini de générer une requête listant vos procédez comme suit:
Dans la console Google Cloud, accédez à la page BigQuery .
Dans le menu de navigation, cliquez sur BigQuery Studio.
Cliquez sur
Saisir une nouvelle requête. Le volet Explorer charge automatiquement la base de données sélectionnée.Dans l'éditeur de requête, saisissez la requête suivante, puis appuyez sur Entrée. Le caractère dièse (
#
) s'affiche Gemini pour générer du code SQL.# select the sum of sales by date and product casted to day from bigquery-public-data.thelook_ecommerce.order_items joined with bigquery-public-data.thelook_ecommerce.products
Gemini suggère une requête SQL semblable à celle-ci :
SELECT sum(sale_price), DATE(created_at), product_id FROM `bigquery-public-data.thelook_ecommerce.order_items` AS t1 INNER JOIN `bigquery-public-data.thelook_ecommerce.products` AS t2 ON t1.product_id = t2.id GROUP BY 2, 3
Pour accepter le code suggéré, cliquez sur Tabulation, puis sur Exécuter pour exécuter l'instruction SQL. Vous pouvez aussi parcourir les suggestions de requêtes SQL accepter les mots spécifiques suggérés dans la déclaration.
Examinez les résultats dans le volet Résultats de la requête.
Créer un modèle de prévision et afficher les résultats
Dans cette section, vous allez utiliser BigQuery ML pour effectuer les opérations suivantes:
- Utiliser une requête de tendance pour créer un modèle de prévision
- Utiliser Gemini pour expliquer et vous aider à rédiger une requête à consulter les résultats du modèle de prévision.
Vous allez utiliser l'exemple de requête suivant avec les ventes réelles, qui sont utilisées comme l'entrée du modèle. La requête fait partie de la création du modèle de ML.
Pour créer un modèle de ML de prévision, dans l'éditeur SQL de BigQuery, exécutez le code SQL suivant:
CREATE MODEL bqml_tutorial.sales_forecasting_model OPTIONS(MODEL_TYPE='ARIMA_PLUS', time_series_timestamp_col='date_col', time_series_data_col='total_sales', time_series_id_col='product_id') AS SELECT sum(sale_price) as total_sales, DATE(created_at) as date_col, product_id FROM `bigquery-public-data.thelook_ecommerce.order_items` AS t1 INNER JOIN `bigquery-public-data.thelook_ecommerce.products` AS t2 ON t1.product_id = t2.id GROUP BY 2, 3;
Vous pouvez utiliser Gemini pour vous aider à comprendre requête
Une fois le modèle créé, le volet Résultats affiche un message semblable à comme suit:
This statement will replace the model named sales_forecasting_model. Depending on the type of model, this may take several hours to complete.
Dans le volet Gemini, saisissez une requête pour que Gemini vous aide vous écrivez une requête pour obtenir une prévision du modèle une fois qu'il est terminé. Pour exemple, saisissez
How can I get a forecast in SQL from the model?
En fonction du contexte de la requête, Gemini renvoie un Exemple de modèle de ML prévoyant les ventes:
To get a forecast in SQL from the model, you can use the following query: SELECT * FROM ML.FORECAST(MODEL `PROJECT_ID.DATASET_ID.MODEL_NAME`, STRUCT( 7 AS horizon, 0.95 AS confidence_level ) )
Dans le volet Gemini, copiez la requête SQL.
Dans l'éditeur SQL BigQuery, collez, puis exécutez la requête SQL.
Effectuer un nettoyage
Pour éviter que les ressources soient facturées sur votre compte Google Cloud, utilisé dans ce tutoriel, vous pouvez supprimer le projet Google Cloud créé pour ce tutoriel. Vous pouvez également supprimer les différentes ressources.
- In the Google Cloud console, go to the Manage resources page.
- In the project list, select the project that you want to delete, and then click Delete.
- In the dialog, type the project ID, and then click Shut down to delete the project.
Supprimer l'ensemble de données
Si vous supprimez votre projet, tous les ensembles de données et toutes les tables qui lui sont associés sont également supprimés. Si vous réutiliser le projet, vous pouvez supprimer l'ensemble de données que vous avez créé ce tutoriel.
Dans la console Google Cloud, ouvrez la page BigQuery .
Dans le volet de navigation, sélectionnez l'ensemble de données
bqml_tutorial
que vous avez créé.Pour supprimer l'ensemble de données, la table et toutes les données, cliquez sur Supprimer ensemble de données.
Dans la boîte de dialogue Supprimer l'ensemble de données, saisissez le nom du l'ensemble de données (
bqml_tutorial
), puis cliquez sur Supprimer.
Étape suivante
En savoir plus sur les quotas et limites.
En savoir plus sur les emplacements de Gemini.