このページでは、BigQuery データに接続する Conversational Analytics(会話分析)API データ エージェント用の効果的なプロンプトの作成に推奨される構造について説明します。これらのプロンプトは、system_instruction
パラメータを使用して文字列として定義する、作成済みのコンテキストです。
システム指示のキー コンポーネントの例
以降のセクションでは、BigQuery のシステム指示のキー コンポーネントを示します。これらのキーには、次のものがあります。
tables
fields
measures
golden_queries
golden_action_plans
relationships
glossaries
additional_descriptions
これらのキー コンポーネントの説明については、作成されたコンテキストでエージェントの動作をガイドするのドキュメント ページをご覧ください。
tables
を使用してデータを記述する
次の YAML コードブロックは、テーブル bigquery-public-data.thelook_ecommerce.orders
の tables
キーの基本構造を示しています。
- tables:
- table:
- name: bigquery-public-data.thelook_ecommerce.orders
- description: Data for customer orders in The Look fictitious e-commerce store.
- synonyms:
- sales
- orders_data
- tags:
- ecommerce
- transaction
fields
を使用して、よく使用されるフィールドを記述する
次の YAML コードサンプルでは、orders
テーブルのキーフィールド(order_id
、status
、created_at
、num_of_items
、earnings
など)を記述しています。
- tables:
- table:
- name: bigquery-public-data.thelook_ecommerce.orders
- fields:
- field:
- name: order_id
- description: The unique identifier for each customer order.
- field:
- name: user_id
- description: The unique identifier for each customer.
- field:
- name: status
- description: The current status of the order.
- sample_values:
- complete
- shipped
- returned
- field:
- name: created_at
- description: The timestamp when the order was created.
- field:
- name: num_of_items
- description: The total number of items in the order.
- aggregations:
- sum
- avg
- field:
- name: earnings
- description: The sales amount for the order.
- aggregations:
- sum
- avg
measures
を使用してビジネス指標を定義する
たとえば、収益から費用を差し引いた計算として、次のように profit
メジャーを定義できます。
- tables:
- table:
- name: bigquery-public-data.thelook_ecommerce.orders
- measures:
- measure:
- name: profit
- description: Raw profit (earnings minus cost).
- exp: earnings - cost
- synonyms: gains
golden_queries
を使用して精度を向上させる
たとえば、orders
テーブルのデータの一般的な分析用に、次のようにゴールデン クエリを定義できます。
- tables:
- table:
- golden_queries:
- golden_query:
- natural_language_query: How many orders are there?
- sql_query: SELECT COUNT(*) FROM sqlgen-testing.thelook_ecommerce.orders
- golden_query:
- natural_language_query: How many orders were shipped?
- sql_query: >-
SELECT COUNT(*) FROM sqlgen-testing.thelook_ecommerce.orders
WHERE status = 'shipped'
golden_action_plans
を使用して、複数のステップからなるタスクのアウトラインを示す
たとえば、年齢層別の注文の内訳を表示するアクション プランを定義し、SQL クエリと可視化関連の手順の詳細を含めることができます。
- tables:
- table:
- golden_action_plans:
- golden_action_plan:
- natural_language_query: Show me the number of orders broken down by age group.
- action_plan:
- step: >-
Run a SQL query that joins the table
sqlgen-testing.thelook_ecommerce.orders and
sqlgen-testing.thelook_ecommerce.users to get a
breakdown of order count by age group.
- step: >-
Create a vertical bar plot using the retrieved data,
with one bar per age group.
relationships
を使用してテーブル結合を定義する
たとえば、bigquery-public-data.thelook_ecommerce.orders
テーブルと bigquery-public-data.thelook_ecommerce.users
テーブルの間に、orders_to_user
のリレーションシップを次のように定義できます。
- relationships:
- relationship:
- name: orders_to_user
- description: >-
Connects customer order data to user information with the user_id and id fields to allow an aggregated view of sales by customer demographics.
- relationship_type: many-to-one
- join_type: left
- left_table: bigquery-public-data.thelook_ecommerce.orders
- right_table: bigquery-public-data.thelook_ecommerce.users
- relationship_columns:
- left_column: user_id
- right_column: id
glossaries
を使用してビジネス用語を説明する
たとえば、特定のビジネス コンテキストに従って、一般的なビジネス ステータスや「OMPF」などの用語を次のように定義できます。
- glossaries:
- glossary:
- term: complete
- description: Represents an order status where the order has been completed.
- synonyms: 'finish, done, fulfilled'
- glossary:
- term: shipped
- description: Represents an order status where the order has been shipped to the customer.
- glossary:
- term: returned
- description: Represents an order status where the customer has returned the order.
- glossary:
- term: OMPF
- description: Order Management and Product Fulfillment
additional_descriptions
を使用して追加の指示を含める
たとえば、additional_descriptions
キーを使用して、組織に関する情報を次のように提供できます。
- additional_descriptions:
- text: All the sales data pertains to The Look, a fictitious ecommerce store.
- text: 'Orders can be of three categories: food, clothes, and electronics.'
例: BigQuery のシステム指示
次の例は、架空のセールス アナリストとして定義したエージェントへのシステム指示のサンプルを示しています。
- system_instruction: >-
You are an expert sales analyst for a fictitious ecommerce store. You will answer questions about sales, orders, and customer data. Your responses should be concise and data-driven.
- tables:
- table:
- name: bigquery-public-data.thelook_ecommerce.orders
- description: Data for orders in The Look, a fictitious ecommerce store.
- synonyms: sales
- tags: 'sale, order, sales_order'
- fields:
- field:
- name: order_id
- description: The unique identifier for each customer order.
- field:
- name: user_id
- description: The unique identifier for each customer.
- field:
- name: status
- description: The current status of the order.
- sample_values:
- complete
- shipped
- returned
- field:
- name: created_at
- description: >-
The date and time at which the order was created in timestamp
format.
- field:
- name: returned_at
- description: >-
The date and time at which the order was returned in timestamp
format.
- field:
- name: num_of_items
- description: The total number of items in the order.
- aggregations: 'sum, avg'
- field:
- name: earnings
- description: The sales revenue for the order.
- aggregations: 'sum, avg'
- field:
- name: cost
- description: The cost for the items in the order.
- aggregations: 'sum, avg'
- measures:
- measure:
- name: profit
- description: Raw profit (earnings minus cost).
- exp: earnings - cost
- synonyms: gains
- golden_queries:
- golden_query:
- natural_language_query: How many orders are there?
- sql_query: SELECT COUNT(*) FROM sqlgen-testing.thelook_ecommerce.orders
- golden_query:
- natural_language_query: How many orders were shipped?
- sql_query: >-
SELECT COUNT(*) FROM sqlgen-testing.thelook_ecommerce.orders
WHERE status = 'shipped'
- golden_action_plans:
- golden_action_plan:
- natural_language_query: Show me the number of orders broken down by age group.
- action_plan:
- step: >-
Run a SQL query that joins the table
sqlgen-testing.thelook_ecommerce.orders and
sqlgen-testing.thelook_ecommerce.users to get a
breakdown of order count by age group.
- step: >-
Create a vertical bar plot using the retrieved data,
with one bar per age group.
- table:
- name: bigquery-public-data.thelook_ecommerce.users
- description: Data for users in The Look, a fictitious ecommerce store.
- synonyms: customers
- tags: 'user, customer, buyer'
- fields:
- field:
- name: id
- description: The unique identifier for each user.
- field:
- name: first_name
- description: The first name of the user.
- tag: person
- sample_values: 'alex, izumi, nur'
- field:
- name: last_name
- description: The first name of the user.
- tag: person
- sample_values: 'warmer, stilles, smith'
- field:
- name: age_group
- description: The age demographic group of the user.
- sample_values:
- 18-24
- 25-34
- 35-49
- 50+
- field:
- name: email
- description: The email address of the user.
- tag: contact
- sample_values: '222larabrown@gmail.com, cloudysanfrancisco@gmail.com'
- golden_queries:
- golden_query:
- natural_language_query: How many unique customers are there?
- sql_query: >-
SELECT COUNT(DISTINCT id) FROM
bigquery-public-data.thelook_ecommerce.users
- golden_query:
- natural_language_query: How many users in the 25-34 age group have a cymbalgroup email address?
- sql_query: >-
SELECT COUNT(DISTINCT id) FROM
bigquery-public-data.thelook_ecommerce.users WHERE users.age_group =
'25-34' AND users.email LIKE '%@cymbalgroup.com';
- relationships:
- relationship:
- name: orders_to_user
- description: >-
Connects customer order data to user information with the user_id and id fields to allow an aggregated view of sales by customer demographics.
- relationship_type: many-to-one
- join_type: left
- left_table: bigquery-public-data.thelook_ecommerce.orders
- right_table: bigquery-public-data.thelook_ecommerce.users
- relationship_columns:
- left_column: user_id
- right_column: id
- glossaries:
- glossary:
- term: complete
- description: Represents an order status where the order has been completed.
- synonyms: 'finish, done, fulfilled'
- glossary:
- term: shipped
- description: Represents an order status where the order has been shipped to the customer.
- glossary:
- term: returned
- description: Represents an order status where the customer has returned the order.
- glossary:
- term: OMPF
- description: Order Management and Product Fulfillment
- additional_descriptions:
- text: All the sales data pertains to The Look, a fictitious ecommerce store.
- text: 'Orders can be of three categories: food, clothes, and electronics.'