演示如何使用 Google Cloud Vision API 和 ImageMagick 检测上传到 Cloud Storage 存储分区的令人反感的图片并对其进行模糊处理。
深入探索
如需查看包含此代码示例的详细文档,请参阅以下内容:
代码示例
C#
public async Task HandleAsync(CloudEvent cloudEvent, StorageObjectData data, CancellationToken cancellationToken)
{
// Validate parameters
if (data.Bucket is null || data.Name is null)
{
_logger.LogError("Malformed GCS event.");
return;
}
// Construct URI to GCS bucket and file.
string gcsUri = $"gs://{data.Bucket}/{data.Name}";
_logger.LogInformation("Analyzing {uri}", gcsUri);
// Perform safe search detection using the Vision API.
Image image = Image.FromUri(gcsUri);
SafeSearchAnnotation annotation;
try
{
annotation = await _visionClient.DetectSafeSearchAsync(image);
}
// If the call to the Vision API fails, log the error but let the function complete normally.
// If the exceptions weren't caught (and just propagated) the event would be retried.
// See the "Best Practices" section in the documentation for more details about retry.
catch (AnnotateImageException e)
{
_logger.LogError(e, "Vision API reported an error while performing safe search detection");
return;
}
catch (RpcException e)
{
_logger.LogError(e, "Error communicating with the Vision API");
return;
}
if (annotation.Adult == Likelihood.VeryLikely || annotation.Violence == Likelihood.VeryLikely)
{
_logger.LogInformation("Detected {uri} as inappropriate.", gcsUri);
await BlurImageAsync(data, cancellationToken);
}
else
{
_logger.LogInformation("Detected {uri} as OK.", gcsUri);
}
}
Go
// GCSEvent is the payload of a GCS event.
// additional fields are documented at
// https://cloud.google.com/storage/docs/json_api/v1/objects#resource
type GCSEvent struct {
Bucket string `json:"bucket"`
Name string `json:"name"`
}
// blurOffensiveImages blurs offensive images uploaded to GCS.
func blurOffensiveImages(ctx context.Context, e cloudevents.Event) error {
outputBucket := os.Getenv("BLURRED_BUCKET_NAME")
if outputBucket == "" {
return errors.New("environment variable BLURRED_BUCKET_NAME must be set")
}
gcsEvent := &GCSEvent{}
if err := e.DataAs(gcsEvent); err != nil {
return fmt.Errorf("e.DataAs: failed to decode event data: %v", err)
}
img := vision.NewImageFromURI(fmt.Sprintf("gs://%s/%s", gcsEvent.Bucket, gcsEvent.Name))
resp, err := visionClient.DetectSafeSearch(ctx, img, nil)
if err != nil {
return fmt.Errorf("visionClient.DetectSafeSearch: %v", err)
}
if resp.GetAdult() == visionpb.Likelihood_VERY_LIKELY ||
resp.GetViolence() == visionpb.Likelihood_VERY_LIKELY {
return blur(ctx, gcsEvent.Bucket, outputBucket, gcsEvent.Name)
}
log.Printf("The image %q was detected as OK.", gcsEvent.Name)
return nil
}
Java
@Override
// Blurs uploaded images that are flagged as Adult or Violence.
public void accept(CloudEvent event) {
// Extract the GCS Event data from the CloudEvent's data payload.
GcsEvent data = getEventData(event);
// Validate parameters
if (data.getBucket() == null || data.getName() == null) {
logger.severe("Error: Malformed GCS event.");
return;
}
BlobInfo blobInfo = BlobInfo.newBuilder(data.getBucket(), data.getName()).build();
// Construct URI to GCS bucket and file.
String gcsPath = String.format("gs://%s/%s", data.getBucket(), data.getName());
logger.info(String.format("Analyzing %s", data.getName()));
// Construct request.
ImageSource imgSource = ImageSource.newBuilder().setImageUri(gcsPath).build();
Image img = Image.newBuilder().setSource(imgSource).build();
Feature feature = Feature.newBuilder().setType(Type.SAFE_SEARCH_DETECTION).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder().addFeatures(feature).setImage(img).build();
List<AnnotateImageRequest> requests = List.of(request);
// Send request to the Vision API.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
for (AnnotateImageResponse res : responses) {
if (res.hasError()) {
logger.info(String.format("Error: %s", res.getError().getMessage()));
return;
}
// Get Safe Search Annotations
SafeSearchAnnotation annotation = res.getSafeSearchAnnotation();
if (annotation.getAdultValue() == 5 || annotation.getViolenceValue() == 5) {
logger.info(String.format("Detected %s as inappropriate.", data.getName()));
blur(blobInfo);
} else {
logger.info(String.format("Detected %s as OK.", data.getName()));
}
}
} catch (IOException e) {
logger.log(Level.SEVERE, "Error with Vision API: " + e.getMessage(), e);
}
}
Node.js
// Blurs uploaded images that are flagged as Adult or Violence.
exports.blurOffensiveImages = async event => {
// This event represents the triggering Cloud Storage object.
const object = event;
const file = storage.bucket(object.bucket).file(object.name);
const filePath = `gs://${object.bucket}/${object.name}`;
console.log(`Analyzing ${file.name}.`);
try {
const [result] = await client.safeSearchDetection(filePath);
const detections = result.safeSearchAnnotation || {};
if (
// Levels are defined in https://cloud.google.com/vision/docs/reference/rest/v1/AnnotateImageResponse#likelihood
detections.adult === 'VERY_LIKELY' ||
detections.violence === 'VERY_LIKELY'
) {
console.log(`Detected ${file.name} as inappropriate.`);
return await blurImage(file, BLURRED_BUCKET_NAME);
} else {
console.log(`Detected ${file.name} as OK.`);
}
} catch (err) {
console.error(`Failed to analyze ${file.name}.`, err);
throw err;
}
};
PHP
function blurOffensiveImages(CloudEvent $cloudevent): void
{
$log = fopen(getenv('LOGGER_OUTPUT') ?: 'php://stderr', 'wb');
$storage = new StorageClient();
$data = $cloudevent->getData();
$file = $storage->bucket($data['bucket'])->object($data['name']);
$filePath = 'gs://' . $data['bucket'] . '/' . $data['name'];
fwrite($log, 'Analyzing ' . $filePath . PHP_EOL);
$annotator = new ImageAnnotatorClient();
$storage = new StorageClient();
try {
$response = $annotator->safeSearchDetection($filePath);
// Handle error
if ($response->hasError()) {
$code = Code::name($response->getError()->getCode());
$message = $response->getError()->getMessage();
fwrite($log, sprintf('%s: %s' . PHP_EOL, $code, $message));
return;
}
$annotation = $response->getSafeSearchAnnotation();
$isInappropriate =
$annotation->getAdult() === Likelihood::VERY_LIKELY ||
$annotation->getViolence() === Likelihood::VERY_LIKELY;
if ($isInappropriate) {
fwrite($log, 'Detected ' . $data['name'] . ' as inappropriate.' . PHP_EOL);
$blurredBucketName = getenv('BLURRED_BUCKET_NAME');
blurImage($log, $file, $blurredBucketName);
} else {
fwrite($log, 'Detected ' . $data['name'] . ' as OK.' . PHP_EOL);
}
} catch (Exception $e) {
fwrite($log, 'Failed to analyze ' . $data['name'] . PHP_EOL);
fwrite($log, $e->getMessage() . PHP_EOL);
}
}
Python
# Blurs uploaded images that are flagged as Adult or Violent imagery.
@functions_framework.cloud_event
def blur_offensive_images(cloud_event):
file_data = cloud_event.data
file_name = file_data["name"]
bucket_name = file_data["bucket"]
blob = storage_client.bucket(bucket_name).get_blob(file_name)
blob_uri = f"gs://{bucket_name}/{file_name}"
blob_source = vision.Image(source=vision.ImageSource(gcs_image_uri=blob_uri))
# Ignore already-blurred files
if file_name.startswith("blurred-"):
print(f"The image {file_name} is already blurred.")
return
print(f"Analyzing {file_name}.")
result = vision_client.safe_search_detection(image=blob_source)
detected = result.safe_search_annotation
# Process image
# 5 maps to VERY_LIKELY
if detected.adult == 5 or detected.violence == 5:
print(f"The image {file_name} was detected as inappropriate.")
return __blur_image(blob)
else:
print(f"The image {file_name} was detected as OK.")
Ruby
# Blurs uploaded images that are flagged as Adult or Violence.
FunctionsFramework.cloud_event "blur_offensive_images" do |event|
# Event-triggered Ruby functions receive a CloudEvents::Event::V1 object.
# See https://cloudevents.github.io/sdk-ruby/latest/CloudEvents/Event/V1.html
# The storage event payload can be obtained from the event data.
payload = event.data
file_name = payload["name"]
bucket_name = payload["bucket"]
# Ignore already-blurred files
if file_name.start_with? "blurred-"
logger.info "The image #{file_name} is already blurred."
return
end
# Get image annotations from the Vision service
logger.info "Analyzing #{file_name}."
gs_uri = "gs://#{bucket_name}/#{file_name}"
result = global(:vision_client).safe_search_detection image: gs_uri
annotation = result.responses.first.safe_search_annotation
# Respond to annotations by possibly blurring the image
if annotation.adult == :VERY_LIKELY || annotation.violence == :VERY_LIKELY
logger.info "The image #{file_name} was detected as inappropriate."
blur_image bucket_name, file_name
else
logger.info "The image #{file_name} was detected as OK."
end
end
后续步骤
如需搜索和过滤其他 Google Cloud 产品的代码示例,请参阅 Google Cloud 示例浏览器。