- 3.11.0 (latest)
- 3.10.0
- 3.9.0
- 3.8.0
- 3.7.0
- 3.6.0
- 3.5.0
- 3.4.0
- 3.3.0
- 3.2.0
- 3.1.0
- 3.0.0
- 2.28.0
- 2.27.0
- 2.26.0
- 2.25.0
- 2.24.0
- 2.23.0
- 2.22.0
- 2.21.0
- 2.20.0
- 2.19.0
- 2.18.0
- 2.17.0
- 2.16.0
- 2.15.0
- 2.14.0
- 2.13.0
- 2.12.0
- 2.11.0
- 2.10.0
- 2.9.0
- 2.8.0
- 2.7.0
- 2.6.0
- 2.5.0
- 2.4.0
- 2.3.0
- 2.2.0
- 2.1.0
- 2.0.0
- 1.8.0
- 1.7.0
- 1.6.0
- 1.5.0
- 1.4.0
- 1.3.0
- 1.2.0
- 1.1.0
- 1.0.0
public sealed class Model : IMessage<Model>, IEquatable<Model>, IDeepCloneable<Model>, IBufferMessage, IMessage
Reference documentation and code samples for the Cloud AI Platform v1 API class Model.
A trained machine learning Model.
Namespace
Google.Cloud.AIPlatform.V1Assembly
Google.Cloud.AIPlatform.V1.dll
Constructors
Model()
public Model()
Model(Model)
public Model(Model other)
Parameter | |
---|---|
Name | Description |
other | Model |
Properties
ArtifactUri
public string ArtifactUri { get; set; }
Immutable. The path to the directory containing the Model artifact and any of its supporting files. Not required for AutoML Models.
Property Value | |
---|---|
Type | Description |
string |
BaseModelSource
public Model.Types.BaseModelSource BaseModelSource { get; set; }
Optional. User input field to specify the base model source. Currently it only supports specifing the Model Garden models and Genie models.
Property Value | |
---|---|
Type | Description |
ModelTypesBaseModelSource |
ContainerSpec
public ModelContainerSpec ContainerSpec { get; set; }
Input only. The specification of the container that is to be used when deploying this Model. The specification is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel], and all binaries it contains are copied and stored internally by Vertex AI. Not required for AutoML Models.
Property Value | |
---|---|
Type | Description |
ModelContainerSpec |
CreateTime
public Timestamp CreateTime { get; set; }
Output only. Timestamp when this Model was uploaded into Vertex AI.
Property Value | |
---|---|
Type | Description |
Timestamp |
DataStats
public Model.Types.DataStats DataStats { get; set; }
Stats of data used for training or evaluating the Model.
Only populated when the Model is trained by a TrainingPipeline with [data_input_config][TrainingPipeline.data_input_config].
Property Value | |
---|---|
Type | Description |
ModelTypesDataStats |
DeployedModels
public RepeatedField<DeployedModelRef> DeployedModels { get; }
Output only. The pointers to DeployedModels created from this Model. Note that Model could have been deployed to Endpoints in different Locations.
Property Value | |
---|---|
Type | Description |
RepeatedFieldDeployedModelRef |
Description
public string Description { get; set; }
The description of the Model.
Property Value | |
---|---|
Type | Description |
string |
DisplayName
public string DisplayName { get; set; }
Required. The display name of the Model. The name can be up to 128 characters long and can consist of any UTF-8 characters.
Property Value | |
---|---|
Type | Description |
string |
EncryptionSpec
public EncryptionSpec EncryptionSpec { get; set; }
Customer-managed encryption key spec for a Model. If set, this Model and all sub-resources of this Model will be secured by this key.
Property Value | |
---|---|
Type | Description |
EncryptionSpec |
Etag
public string Etag { get; set; }
Used to perform consistent read-modify-write updates. If not set, a blind "overwrite" update happens.
Property Value | |
---|---|
Type | Description |
string |
ExplanationSpec
public ExplanationSpec ExplanationSpec { get; set; }
The default explanation specification for this Model.
The Model can be used for [requesting explanation][google.cloud.aiplatform.v1.PredictionService.Explain] after being [deployed][google.cloud.aiplatform.v1.EndpointService.DeployModel] if it is populated. The Model can be used for [batch explanation][google.cloud.aiplatform.v1.BatchPredictionJob.generate_explanation] if it is populated.
All fields of the explanation_spec can be overridden by [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1.DeployModelRequest.deployed_model], or [explanation_spec][google.cloud.aiplatform.v1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob].
If the default explanation specification is not set for this Model, this Model can still be used for [requesting explanation][google.cloud.aiplatform.v1.PredictionService.Explain] by setting [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] of [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1.DeployModelRequest.deployed_model] and for [batch explanation][google.cloud.aiplatform.v1.BatchPredictionJob.generate_explanation] by setting [explanation_spec][google.cloud.aiplatform.v1.BatchPredictionJob.explanation_spec] of [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob].
Property Value | |
---|---|
Type | Description |
ExplanationSpec |
Labels
public MapField<string, string> Labels { get; }
The labels with user-defined metadata to organize your Models.
Label keys and values can be no longer than 64 characters (Unicode codepoints), can only contain lowercase letters, numeric characters, underscores and dashes. International characters are allowed.
See https://goo.gl/xmQnxf for more information and examples of labels.
Property Value | |
---|---|
Type | Description |
MapFieldstringstring |
Metadata
public Value Metadata { get; set; }
Immutable. An additional information about the Model; the schema of the metadata can be found in [metadata_schema][google.cloud.aiplatform.v1.Model.metadata_schema_uri]. Unset if the Model does not have any additional information.
Property Value | |
---|---|
Type | Description |
Value |
MetadataArtifact
public string MetadataArtifact { get; set; }
Output only. The resource name of the Artifact that was created in
MetadataStore when creating the Model. The Artifact resource name pattern
is
projects/{project}/locations/{location}/metadataStores/{metadata_store}/artifacts/{artifact}
.
Property Value | |
---|---|
Type | Description |
string |
MetadataSchemaUri
public string MetadataSchemaUri { get; set; }
Immutable. Points to a YAML file stored on Google Cloud Storage describing additional information about the Model, that is specific to it. Unset if the Model does not have any additional information. The schema is defined as an OpenAPI 3.0.2 Schema Object. AutoML Models always have this field populated by Vertex AI, if no additional metadata is needed, this field is set to an empty string. Note: The URI given on output will be immutable and probably different, including the URI scheme, than the one given on input. The output URI will point to a location where the user only has a read access.
Property Value | |
---|---|
Type | Description |
string |
ModelName
public ModelName ModelName { get; set; }
Property Value | |
---|---|
Type | Description |
ModelName |
ModelSourceInfo
public ModelSourceInfo ModelSourceInfo { get; set; }
Output only. Source of a model. It can either be automl training pipeline, custom training pipeline, BigQuery ML, or saved and tuned from Genie or Model Garden.
Property Value | |
---|---|
Type | Description |
ModelSourceInfo |
Name
public string Name { get; set; }
The resource name of the Model.
Property Value | |
---|---|
Type | Description |
string |
OriginalModelInfo
public Model.Types.OriginalModelInfo OriginalModelInfo { get; set; }
Output only. If this Model is a copy of another Model, this contains info about the original.
Property Value | |
---|---|
Type | Description |
ModelTypesOriginalModelInfo |
PipelineJob
public string PipelineJob { get; set; }
Optional. This field is populated if the model is produced by a pipeline job.
Property Value | |
---|---|
Type | Description |
string |
PipelineJobAsPipelineJobName
public PipelineJobName PipelineJobAsPipelineJobName { get; set; }
PipelineJobName-typed view over the PipelineJob resource name property.
Property Value | |
---|---|
Type | Description |
PipelineJobName |
PredictSchemata
public PredictSchemata PredictSchemata { get; set; }
The schemata that describe formats of the Model's predictions and explanations as given and returned via [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
Property Value | |
---|---|
Type | Description |
PredictSchemata |
SupportedDeploymentResourcesTypes
public RepeatedField<Model.Types.DeploymentResourcesType> SupportedDeploymentResourcesTypes { get; }
Output only. When this Model is deployed, its prediction resources are
described by the prediction_resources
field of the
[Endpoint.deployed_models][google.cloud.aiplatform.v1.Endpoint.deployed_models]
object. Because not all Models support all resource configuration types,
the configuration types this Model supports are listed here. If no
configuration types are listed, the Model cannot be deployed to an
[Endpoint][google.cloud.aiplatform.v1.Endpoint] and does not support
online predictions
([PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict]
or
[PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain]).
Such a Model can serve predictions by using a
[BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob], if it
has at least one entry each in
[supported_input_storage_formats][google.cloud.aiplatform.v1.Model.supported_input_storage_formats]
and
[supported_output_storage_formats][google.cloud.aiplatform.v1.Model.supported_output_storage_formats].
Property Value | |
---|---|
Type | Description |
RepeatedFieldModelTypesDeploymentResourcesType |
SupportedExportFormats
public RepeatedField<Model.Types.ExportFormat> SupportedExportFormats { get; }
Output only. The formats in which this Model may be exported. If empty, this Model is not available for export.
Property Value | |
---|---|
Type | Description |
RepeatedFieldModelTypesExportFormat |
SupportedInputStorageFormats
public RepeatedField<string> SupportedInputStorageFormats { get; }
Output only. The formats this Model supports in [BatchPredictionJob.input_config][google.cloud.aiplatform.v1.BatchPredictionJob.input_config]. If [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] exists, the instances should be given as per that schema.
The possible formats are:
jsonl
The JSON Lines format, where each instance is a single line. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].csv
The CSV format, where each instance is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].tf-record
The TFRecord format, where each instance is a single record in tfrecord syntax. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].tf-record-gzip
Similar totf-record
, but the file is gzipped. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source].bigquery
Each instance is a single row in BigQuery. Uses [BigQuerySource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.bigquery_source].file-list
Each line of the file is the location of an instance to process, usesgcs_source
field of the [InputConfig][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig] object.
If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
Property Value | |
---|---|
Type | Description |
RepeatedFieldstring |
SupportedOutputStorageFormats
public RepeatedField<string> SupportedOutputStorageFormats { get; }
Output only. The formats this Model supports in [BatchPredictionJob.output_config][google.cloud.aiplatform.v1.BatchPredictionJob.output_config]. If both [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] and [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.prediction_schema_uri] exist, the predictions are returned together with their instances. In other words, the prediction has the original instance data first, followed by the actual prediction content (as per the schema).
The possible formats are:
jsonl
The JSON Lines format, where each prediction is a single line. Uses [GcsDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.gcs_destination].csv
The CSV format, where each prediction is a single comma-separated line. The first line in the file is the header, containing comma-separated field names. Uses [GcsDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.gcs_destination].bigquery
Each prediction is a single row in a BigQuery table, uses [BigQueryDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.bigquery_destination] .
If this Model doesn't support any of these formats it means it cannot be used with a [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. However, if it has [supported_deployment_resources_types][google.cloud.aiplatform.v1.Model.supported_deployment_resources_types], it could serve online predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] or [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain].
Property Value | |
---|---|
Type | Description |
RepeatedFieldstring |
TrainingPipeline
public string TrainingPipeline { get; set; }
Output only. The resource name of the TrainingPipeline that uploaded this Model, if any.
Property Value | |
---|---|
Type | Description |
string |
TrainingPipelineAsTrainingPipelineName
public TrainingPipelineName TrainingPipelineAsTrainingPipelineName { get; set; }
TrainingPipelineName-typed view over the TrainingPipeline resource name property.
Property Value | |
---|---|
Type | Description |
TrainingPipelineName |
UpdateTime
public Timestamp UpdateTime { get; set; }
Output only. Timestamp when this Model was most recently updated.
Property Value | |
---|---|
Type | Description |
Timestamp |
VersionAliases
public RepeatedField<string> VersionAliases { get; }
User provided version aliases so that a model version can be referenced via
alias (i.e.
projects/{project}/locations/{location}/models/{model_id}@{version_alias}
instead of auto-generated version id (i.e.
projects/{project}/locations/{location}/models/{model_id}@{version_id})
.
The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from
version_id. A default version alias will be created for the first version
of the model, and there must be exactly one default version alias for a
model.
Property Value | |
---|---|
Type | Description |
RepeatedFieldstring |
VersionCreateTime
public Timestamp VersionCreateTime { get; set; }
Output only. Timestamp when this version was created.
Property Value | |
---|---|
Type | Description |
Timestamp |
VersionDescription
public string VersionDescription { get; set; }
The description of this version.
Property Value | |
---|---|
Type | Description |
string |
VersionId
public string VersionId { get; set; }
Output only. Immutable. The version ID of the model. A new version is committed when a new model version is uploaded or trained under an existing model id. It is an auto-incrementing decimal number in string representation.
Property Value | |
---|---|
Type | Description |
string |
VersionUpdateTime
public Timestamp VersionUpdateTime { get; set; }
Output only. Timestamp when this version was most recently updated.
Property Value | |
---|---|
Type | Description |
Timestamp |