Invia una richiesta di elaborazione

Dopo aver configurato il tuo accountGoogle Cloud e creato un processore, puoi inviare una richiesta al tuo processore Document AI.

Il codice utilizzato per inviare la richiesta è lo stesso per tutti i processori. Puoi vedere le differenze nel funzionamento del processore nelle informazioni generate da ciascun processore.

Se utilizzi la versione v1 dell'API Document AI o la console Google Cloud, puoi inviare richieste di elaborazione a quella versione specifica del processore. Se non specifichi una versione del processore, viene utilizzata la versione predefinita. Per saperne di più, consulta Gestione delle versioni del processore.

Elaborazione online

Le richieste online (sincrone) ti consentono di inviare un singolo documento per l'elaborazione. Document AI elabora immediatamente la richiesta e restituisce un document.

Invia una richiesta a un elaboratore

I seguenti esempi di codice mostrano come inviare una richiesta a un elaboratore.

REST

Questo esempio mostra come fornire i contenuti del documento (contenuti non elaborati del documento in byte tramite una stringa codificata Base64) nell'oggetto rawDocument.

In alternativa, puoi anche specificare inlineDocument, che è lo stesso formato JSON Document restituito da Document AI. In questo modo puoi concatenare le richieste passando lo stesso formato avanti e indietro (ad esempio, se classifichi un documento ed estraendone i contenuti).

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • LOCATION: la posizione del tuo elaboratore, ad esempio:
    • us - Stati Uniti
    • eu - Unione Europea
  • PROJECT_ID: il tuo Google Cloud ID progetto.
  • PROCESSOR_ID: l'ID del tuo processore personalizzato.
  • skipHumanReview: un valore booleano per disattivare la revisione da parte di persone fisiche (supportato solo dai processori human-in-the-loop).
    • true - salta la revisione umana
    • false: attiva la revisione da parte di persone fisiche (valore predefinito)
  • MIME_TYPE: una delle opzioni valide per il tipo MIME.
  • IMAGE_CONTENT: uno dei contenuti validi dei documenti in linea, rappresentato come uno stream di byte. Per le rappresentazioni JSON, la codifica base64 (stringa ASCII) dei dati immagine binari. Questa stringa dovrebbe essere simile alla stringa riportata di seguito:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Per ulteriori informazioni, consulta l'argomento Codifica Base64.
  • FIELD_MASK: specifica i campi da includere nell'output Document. Si tratta di un elenco separato da virgole di nomi completi dei campi in formato FieldMask.
    • Esempio: text,entities,pages.pageNumber
  • INDIVIDUAL_PAGES: un elenco di singole pagine da elaborare.
    • In alternativa, specifica il campo fromStart o fromEnd per elaborare una quantità specifica di pagine dall'inizio o dalla fine del documento.

† Questi contenuti possono essere specificati anche utilizzando contenuti codificati in base64 nell'oggetto inlineDocument.

Metodo HTTP e URL:

POST https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID:process

Corpo JSON della richiesta:

{
  "skipHumanReview": skipHumanReview,
  "rawDocument": {
    "mimeType": "MIME_TYPE",
    "content": "IMAGE_CONTENT"
  },
  "fieldMask": "FIELD_MASK",
  "processOptions": {
    "individualPageSelector" {
      "pages": [INDIVIDUAL_PAGES]
    }
  }
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID:process"

PowerShell

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID:process" | Select-Object -Expand Content

Se la richiesta riesce, il server restituisce un codice di stato HTTP 200 OK e la risposta in formato JSON. Il corpo della risposta contiene un'istanza di Document.

Inviare una richiesta a una versione del processore

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • LOCATION: la posizione del tuo elaboratore, ad esempio:
    • us - Stati Uniti
    • eu - Unione Europea
  • PROJECT_ID: il tuo Google Cloud ID progetto.
  • PROCESSOR_ID: l'ID del tuo processore personalizzato.
  • PROCESSOR_VERSION: l'identificatore della versione del processore. Per saperne di più, consulta Selezionare una versione del processore. Ad esempio:
    • pretrained-TYPE-vX.X-YYYY-MM-DD
    • stable
    • rc
  • skipHumanReview: un valore booleano per disattivare la revisione da parte di persone fisiche (supportato solo dai processori human-in-the-loop).
    • true - salta la revisione umana
    • false: attiva la revisione da parte di persone fisiche (valore predefinito)
  • MIME_TYPE: una delle opzioni valide per il tipo MIME.
  • IMAGE_CONTENT: uno dei contenuti validi dei documenti in linea, rappresentato come uno stream di byte. Per le rappresentazioni JSON, la codifica base64 (stringa ASCII) dei dati immagine binari. Questa stringa dovrebbe essere simile alla stringa riportata di seguito:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Per ulteriori informazioni, consulta l'argomento Codifica Base64.
  • FIELD_MASK: specifica i campi da includere nell'output Document. Si tratta di un elenco separato da virgole di nomi completi dei campi in formato FieldMask.
    • Esempio: text,entities,pages.pageNumber

† Questi contenuti possono essere specificati anche utilizzando contenuti codificati in base64 nell'oggetto inlineDocument.

Metodo HTTP e URL:

POST https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID/processorVersions/PROCESSOR_VERSION:process

Corpo JSON della richiesta:

{
  "skipHumanReview": skipHumanReview,
  "rawDocument": {
    "mimeType": "MIME_TYPE",
    "content": "IMAGE_CONTENT"
  },
  "fieldMask": "FIELD_MASK"
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID/processorVersions/PROCESSOR_VERSION:process"

PowerShell

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID/processorVersions/PROCESSOR_VERSION:process" | Select-Object -Expand Content

Se la richiesta riesce, il server restituisce un codice di stato HTTP 200 OK e la risposta in formato JSON. Il corpo della risposta contiene un'istanza di Document.

C#

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI C#.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


using Google.Cloud.DocumentAI.V1;
using Google.Protobuf;
using System;
using System.IO;

public class QuickstartSample
{
    public Document Quickstart(
        string projectId = "your-project-id",
        string locationId = "your-processor-location",
        string processorId = "your-processor-id",
        string localPath = "my-local-path/my-file-name",
        string mimeType = "application/pdf"
    )
    {
        // Create client
        var client = new DocumentProcessorServiceClientBuilder
        {
            Endpoint = $"{locationId}-documentai.googleapis.com"
        }.Build();

        // Read in local file
        using var fileStream = File.OpenRead(localPath);
        var rawDocument = new RawDocument
        {
            Content = ByteString.FromStream(fileStream),
            MimeType = mimeType
        };

        // Initialize request argument(s)
        var request = new ProcessRequest
        {
            Name = ProcessorName.FromProjectLocationProcessor(projectId, locationId, processorId).ToString(),
            RawDocument = rawDocument
        };

        // Make the request
        var response = client.ProcessDocument(request);

        var document = response.Document;
        Console.WriteLine(document.Text);
        return document;
    }
}

Java

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Java.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


import com.google.cloud.documentai.v1.Document;
import com.google.cloud.documentai.v1.DocumentProcessorServiceClient;
import com.google.cloud.documentai.v1.DocumentProcessorServiceSettings;
import com.google.cloud.documentai.v1.ProcessRequest;
import com.google.cloud.documentai.v1.ProcessResponse;
import com.google.cloud.documentai.v1.RawDocument;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeoutException;

public class ProcessDocument {
  public static void processDocument()
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String location = "your-project-location"; // Format is "us" or "eu".
    String processerId = "your-processor-id";
    String filePath = "path/to/input/file.pdf";
    processDocument(projectId, location, processerId, filePath);
  }

  public static void processDocument(
      String projectId, String location, String processorId, String filePath)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created
    // once, and can be reused for multiple requests. After completing all of your
    // requests, call
    // the "close" method on the client to safely clean up any remaining background
    // resources.
    String endpoint = String.format("%s-documentai.googleapis.com:443", location);
    DocumentProcessorServiceSettings settings =
        DocumentProcessorServiceSettings.newBuilder().setEndpoint(endpoint).build();
    try (DocumentProcessorServiceClient client = DocumentProcessorServiceClient.create(settings)) {
      // The full resource name of the processor, e.g.:
      // projects/project-id/locations/location/processor/processor-id
      // You must create new processors in the Cloud Console first
      String name =
          String.format("projects/%s/locations/%s/processors/%s", projectId, location, processorId);

      // Read the file.
      byte[] imageFileData = Files.readAllBytes(Paths.get(filePath));

      // Convert the image data to a Buffer and base64 encode it.
      ByteString content = ByteString.copyFrom(imageFileData);

      RawDocument document =
          RawDocument.newBuilder().setContent(content).setMimeType("application/pdf").build();

      // Configure the process request.
      ProcessRequest request =
          ProcessRequest.newBuilder().setName(name).setRawDocument(document).build();

      // Recognizes text entities in the PDF document
      ProcessResponse result = client.processDocument(request);
      Document documentResponse = result.getDocument();

      // Get all of the document text as one big string
      String text = documentResponse.getText();

      // Read the text recognition output from the processor
      System.out.println("The document contains the following paragraphs:");
      Document.Page firstPage = documentResponse.getPages(0);
      List<Document.Page.Paragraph> paragraphs = firstPage.getParagraphsList();

      for (Document.Page.Paragraph paragraph : paragraphs) {
        String paragraphText = getText(paragraph.getLayout().getTextAnchor(), text);
        System.out.printf("Paragraph text:\n%s\n", paragraphText);
      }

      // Form parsing provides additional output about
      // form-formatted PDFs. You must create a form
      // processor in the Cloud Console to see full field details.
      System.out.println("The following form key/value pairs were detected:");

      for (Document.Page.FormField field : firstPage.getFormFieldsList()) {
        String fieldName = getText(field.getFieldName().getTextAnchor(), text);
        String fieldValue = getText(field.getFieldValue().getTextAnchor(), text);

        System.out.println("Extracted form fields pair:");
        System.out.printf("\t(%s, %s))\n", fieldName, fieldValue);
      }
    }
  }

  // Extract shards from the text field
  private static String getText(Document.TextAnchor textAnchor, String text) {
    if (textAnchor.getTextSegmentsList().size() > 0) {
      int startIdx = (int) textAnchor.getTextSegments(0).getStartIndex();
      int endIdx = (int) textAnchor.getTextSegments(0).getEndIndex();
      return text.substring(startIdx, endIdx);
    }
    return "[NO TEXT]";
  }
}

Node.js

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Node.js.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION'; // Format is 'us' or 'eu'
// const processorId = 'YOUR_PROCESSOR_ID'; // Create processor in Cloud Console
// const filePath = '/path/to/local/pdf';

const {DocumentProcessorServiceClient} =
  require('@google-cloud/documentai').v1;

// Instantiates a client
const client = new DocumentProcessorServiceClient();

async function processDocument() {
  // The full resource name of the processor, e.g.:
  // projects/project-id/locations/location/processor/processor-id
  // You must create new processors in the Cloud Console first
  const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;

  // Read the file into memory.
  const fs = require('fs').promises;
  const imageFile = await fs.readFile(filePath);

  // Convert the image data to a Buffer and base64 encode it.
  const encodedImage = Buffer.from(imageFile).toString('base64');

  const request = {
    name,
    rawDocument: {
      content: encodedImage,
      mimeType: 'application/pdf',
    },
  };

  // Recognizes text entities in the PDF document
  const [result] = await client.processDocument(request);
  const {document} = result;

  // Get all of the document text as one big string
  const {text} = document;

  // Extract shards from the text field
  const getText = textAnchor => {
    if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
      return '';
    }

    // First shard in document doesn't have startIndex property
    const startIndex = textAnchor.textSegments[0].startIndex || 0;
    const endIndex = textAnchor.textSegments[0].endIndex;

    return text.substring(startIndex, endIndex);
  };

  // Read the text recognition output from the processor
  console.log('The document contains the following paragraphs:');
  const [page1] = document.pages;
  const {paragraphs} = page1;

  for (const paragraph of paragraphs) {
    const paragraphText = getText(paragraph.layout.textAnchor);
    console.log(`Paragraph text:\n${paragraphText}`);
  }

  // Form parsing provides additional output about
  // form-formatted PDFs. You  must create a form
  // processor in the Cloud Console to see full field details.
  console.log('\nThe following form key/value pairs were detected:');

  const {formFields} = page1;
  for (const field of formFields) {
    const fieldName = getText(field.fieldName.textAnchor);
    const fieldValue = getText(field.fieldValue.textAnchor);

    console.log('Extracted key value pair:');
    console.log(`\t(${fieldName}, ${fieldValue})`);
  }
}

Python

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Python.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

from typing import Optional

from google.api_core.client_options import ClientOptions
from google.cloud import documentai  # type: ignore

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_PROCESSOR_LOCATION" # Format is "us" or "eu"
# processor_id = "YOUR_PROCESSOR_ID" # Create processor before running sample
# file_path = "/path/to/local/pdf"
# mime_type = "application/pdf" # Refer to https://cloud.google.com/document-ai/docs/file-types for supported file types
# field_mask = "text,entities,pages.pageNumber"  # Optional. The fields to return in the Document object.
# processor_version_id = "YOUR_PROCESSOR_VERSION_ID" # Optional. Processor version to use


def process_document_sample(
    project_id: str,
    location: str,
    processor_id: str,
    file_path: str,
    mime_type: str,
    field_mask: Optional[str] = None,
    processor_version_id: Optional[str] = None,
) -> None:
    # You must set the `api_endpoint` if you use a location other than "us".
    opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com")

    client = documentai.DocumentProcessorServiceClient(client_options=opts)

    if processor_version_id:
        # The full resource name of the processor version, e.g.:
        # `projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}`
        name = client.processor_version_path(
            project_id, location, processor_id, processor_version_id
        )
    else:
        # The full resource name of the processor, e.g.:
        # `projects/{project_id}/locations/{location}/processors/{processor_id}`
        name = client.processor_path(project_id, location, processor_id)

    # Read the file into memory
    with open(file_path, "rb") as image:
        image_content = image.read()

    # Load binary data
    raw_document = documentai.RawDocument(content=image_content, mime_type=mime_type)

    # For more information: https://cloud.google.com/document-ai/docs/reference/rest/v1/ProcessOptions
    # Optional: Additional configurations for processing.
    process_options = documentai.ProcessOptions(
        # Process only specific pages
        individual_page_selector=documentai.ProcessOptions.IndividualPageSelector(
            pages=[1]
        )
    )

    # Configure the process request
    request = documentai.ProcessRequest(
        name=name,
        raw_document=raw_document,
        field_mask=field_mask,
        process_options=process_options,
    )

    result = client.process_document(request=request)

    # For a full list of `Document` object attributes, reference this page:
    # https://cloud.google.com/document-ai/docs/reference/rest/v1/Document
    document = result.document

    # Read the text recognition output from the processor
    print("The document contains the following text:")
    print(document.text)

Elaborazione dei dati in modalità batch

Le richieste batch (asincrone) ti consentono di inviare più documenti in un'unica richiesta. Document AI risponde con un operation che puoi sottoporre a polling per conoscere lo stato della richiesta. Al termine di questa operazione, contiene un BatchProcessMetadata che rimanda al bucket Cloud Storage in cui vengono memorizzati i risultati elaborati.

Se i file di input a cui vuoi accedere si trovano in un bucket di un altro progetto, devi fornire l'accesso a quel bucket prima di poter accedere ai file. Vedi Configurare l'accesso ai file.

Invia una richiesta a un elaboratore

Gli esempi di codice riportati di seguito mostrano come inviare una richiesta di elaborazione batch a un elaboratore.

REST

Questo esempio mostra come inviare una richiesta POST al metodo batchProcess per l'elaborazione asincrona di documenti di grandi dimensioni. L'esempio utilizza il token di accesso per un account di servizio configurato per il progetto utilizzando Google Cloud CLI. Per istruzioni su come installare Google Cloud CLI, configurare un progetto con un account di servizio e ottenere un token di accesso, consulta Prima di iniziare.

Una richiesta batchProcess avvia un'operazione a lunga esecuzione e memorizza i risultati in un bucket Cloud Storage. Questo esempio mostra anche come recuperare lo stato di questa operazione a lunga esecuzione dopo l'avvio.

Invia la richiesta di elaborazione

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • LOCATION: la posizione del tuo elaboratore, ad esempio:
    • us - Stati Uniti
    • eu - Unione Europea
  • PROJECT_ID: il tuo Google Cloud ID progetto.
  • PROCESSOR_ID: l'ID del tuo processore personalizzato.
  • INPUT_BUCKET_FOLDER: un bucket/una directory Cloud Storage da cui leggere i file di input, espresso nel seguente formato:
    • gs://bucket/directory/
    L'utente che effettua la richiesta deve disporre dell'autorizzazione di lettura per il bucket.
  • MIME_TYPE: una delle opzioni valide per il tipo MIME.
  • OUTPUT_BUCKET_FOLDER: un bucket/una directory Cloud Storage in cui salvare i file di output, espresso nel seguente formato:
    • gs://bucket/directory/
    L'utente che effettua la richiesta deve disporre dell'autorizzazione di scrittura per il bucket.
  • skipHumanReview: un valore booleano per disattivare la revisione da parte di persone fisiche (supportato solo dai processori human-in-the-loop).
    • true - salta la revisione umana
    • false: attiva la revisione da parte di persone fisiche (valore predefinito)
  • FIELD_MASK: specifica i campi da includere nell'output Document. Si tratta di un elenco separato da virgole di nomi completi dei campi in formato FieldMask.
    • Esempio: text,entities,pages.pageNumber

† Anziché utilizzare gcsPrefix per includere tutti i file in una cartella GCS, puoi anche utilizzare gcsPrefix per elencare singolarmente ogni file:documents

  "inputDocuments": {
    "gcsDocuments": {
      "documents": [
        {
          "gcsUri": "gs://BUCKET/PATH/TO/DOCUMENT1.ext",
          "mimeType": "MIME_TYPE"
        },
        {
          "gcsUri": "gs://BUCKET/PATH/TO/DOCUMENT2.ext",
          "mimeType": "MIME_TYPE"
        }
      ]
    }
  }

Metodo HTTP e URL:

POST https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID:batchProcess

Corpo JSON della richiesta:

{
  "inputDocuments": {
    "gcsPrefix": {
      "gcsUriPrefix": "INPUT_BUCKET_FOLDER"
    }
  },
  "documentOutputConfig": {
    "gcsOutputConfig": {
      "gcsUri": "OUTPUT_BUCKET_FOLDER",
      "fieldMask": "FIELD_MASK"
    }
  },
  "skipHumanReview": BOOLEAN
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID:batchProcess"

PowerShell

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID:batchProcess" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente:

{
  "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID"
}

Inviare una richiesta a una versione del processore

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • LOCATION: la posizione del tuo elaboratore, ad esempio:
    • us - Stati Uniti
    • eu - Unione Europea
  • PROJECT_ID: il tuo Google Cloud ID progetto.
  • PROCESSOR_ID: l'ID del tuo processore personalizzato.
  • PROCESSOR_VERSION: l'identificatore della versione del processore. Per saperne di più, consulta Selezionare una versione del processore. Ad esempio:
    • pretrained-TYPE-vX.X-YYYY-MM-DD
    • stable
    • rc
  • INPUT_BUCKET_FOLDER: un bucket/una directory Cloud Storage da cui leggere i file di input, espresso nel seguente formato:
    • gs://bucket/directory/
    L'utente che effettua la richiesta deve disporre dell'autorizzazione di lettura per il bucket.
  • MIME_TYPE: una delle opzioni valide per il tipo MIME.
  • OUTPUT_BUCKET_FOLDER: un bucket/una directory Cloud Storage in cui salvare i file di output, espresso nel seguente formato:
    • gs://bucket/directory/
    L'utente che effettua la richiesta deve disporre dell'autorizzazione di scrittura per il bucket.
  • skipHumanReview: un valore booleano per disattivare la revisione da parte di persone fisiche (supportato solo dai processori human-in-the-loop).
    • true - salta la revisione umana
    • false: attiva la revisione da parte di persone fisiche (valore predefinito)
  • FIELD_MASK: specifica i campi da includere nell'output Document. Si tratta di un elenco separato da virgole di nomi completi dei campi in formato FieldMask.
    • Esempio: text,entities,pages.pageNumber

† Anziché utilizzare gcsPrefix per includere tutti i file in una cartella GCS, puoi anche utilizzare gcsPrefix per elencare singolarmente ogni file:documents

  "inputDocuments": {
    "gcsDocuments": {
      "documents": [
        {
          "gcsUri": "gs://BUCKET/PATH/TO/DOCUMENT1.ext",
          "mimeType": "MIME_TYPE"
        },
        {
          "gcsUri": "gs://BUCKET/PATH/TO/DOCUMENT2.ext",
          "mimeType": "MIME_TYPE"
        }
      ]
    }
  }

Metodo HTTP e URL:

POST https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID/processorVersions/PROCESSOR_VERSION:batchProcess

Corpo JSON della richiesta:

{
  "inputDocuments": {
    "gcsPrefix": {
      "gcsUriPrefix": "INPUT_BUCKET_FOLDER"
    }
  },
  "documentOutputConfig": {
    "gcsOutputConfig": {
      "gcsUri": "OUTPUT_BUCKET_FOLDER",
      "fieldMask": "FIELD_MASK"
    }
  },
  "skipHumanReview": BOOLEAN
}

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID/processorVersions/PROCESSOR_VERSION:batchProcess"

PowerShell

Salva il corpo della richiesta in un file denominato request.json, quindi esegui il comando seguente:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/processors/PROCESSOR_ID/processorVersions/PROCESSOR_VERSION:batchProcess" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente:

{
  "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID"
}

Se la richiesta ha esito positivo, l'API Document AI restituisce il nome dell'operazione.

Visualizza i risultati

Per ottenere i risultati della richiesta, devi inviare una richiesta GET alla risorsa operations. Di seguito è riportato un esempio di come inviare una richiesta di questo tipo. Puoi trovare ulteriori informazioni nella documentazione relativa alle operazioni a lungo termine.

Prima di utilizzare i dati della richiesta, apporta le seguenti sostituzioni:

  • PROJECT_ID: il tuo Google Cloud ID progetto.
  • LOCATION: la posizione in cui è in esecuzione l'operazione a lunga esecuzione, ad esempio:
    • us - Stati Uniti
    • eu - Unione Europea
  • OPERATION_ID: l'ID dell'operazione. L'ID è l'ultimo elemento del nome dell'operazione. Ad esempio:
    • Nome operazione: projects/PROJECT_ID/locations/LOCATION/operations/bc4e1d412863e626
    • ID operazione: bc4e1d412863e626

Metodo HTTP e URL:

GET https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Esegui questo comando:

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
"https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID"

PowerShell

Esegui questo comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://LOCATION-documentai.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID" | Select-Object -Expand Content

Dovresti ricevere una risposta JSON simile alla seguente:

{
  "name": "projects/PROJECT_ID/locations/LOCATION/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.documentai.v1.BatchProcessMetadata",
    "state": "SUCCEEDED",
    "stateMessage": "Processed 1 document(s) successfully",
    "createTime": "TIMESTAMP",
    "updateTime": "TIMESTAMP",
    "individualProcessStatuses": [
      {
        "inputGcsSource": "INPUT_BUCKET_FOLDER/DOCUMENT1.ext",
        "status": {},
        "outputGcsDestination": "OUTPUT_BUCKET_FOLDER/OPERATION_ID/0",
        "humanReviewStatus": {
          "state": "ERROR",
          "stateMessage": "Sharded document protos are not supported for human review."
        }
      }
    ]
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.documentai.v1.BatchProcessResponse"
  }
}

Il corpo della risposta contiene un'istanza di Operation con informazioni sullo stato dell'operazione. Se l'operazione è stata completata correttamente, il campo metadata verrà compilato con un'istanza di BatchProcessMetadata contenente informazioni sui documenti elaborati.

C#

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI C#.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

using Google.Api.Gax;
using Google.Cloud.DocumentAI.V1;
using Google.LongRunning;

public sealed partial class GeneratedDocumentProcessorServiceClientSnippets
{
    /// <summary>Snippet for BatchProcessDocuments</summary>
    /// <remarks>
    /// This snippet has been automatically generated and should be regarded as a code template only.
    /// It will require modifications to work:
    /// - It may require correct/in-range values for request initialization.
    /// - It may require specifying regional endpoints when creating the service client as shown in
    ///   https://cloud.google.com/dotnet/docs/reference/help/client-configuration#endpoint.
    /// </remarks>
    public void BatchProcessDocumentsRequestObject()
    {
        // Create client
        DocumentProcessorServiceClient documentProcessorServiceClient = DocumentProcessorServiceClient.Create();
        // Initialize request argument(s)
        BatchProcessRequest request = new BatchProcessRequest
        {
            ResourceName = new UnparsedResourceName("a/wildcard/resource"),
            SkipHumanReview = false,
            InputDocuments = new BatchDocumentsInputConfig(),
            DocumentOutputConfig = new DocumentOutputConfig(),
            ProcessOptions = new ProcessOptions(),
            Labels = { { "", "" }, },
        };
        // Make the request
        Operation<BatchProcessResponse, BatchProcessMetadata> response = documentProcessorServiceClient.BatchProcessDocuments(request);

        // Poll until the returned long-running operation is complete
        Operation<BatchProcessResponse, BatchProcessMetadata> completedResponse = response.PollUntilCompleted();
        // Retrieve the operation result
        BatchProcessResponse result = completedResponse.Result;

        // Or get the name of the operation
        string operationName = response.Name;
        // This name can be stored, then the long-running operation retrieved later by name
        Operation<BatchProcessResponse, BatchProcessMetadata> retrievedResponse = documentProcessorServiceClient.PollOnceBatchProcessDocuments(operationName);
        // Check if the retrieved long-running operation has completed
        if (retrievedResponse.IsCompleted)
        {
            // If it has completed, then access the result
            BatchProcessResponse retrievedResult = retrievedResponse.Result;
        }
    }
}

Go

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Go.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


package main

import (
	"context"

	documentai "cloud.google.com/go/documentai/apiv1"
	documentaipb "cloud.google.com/go/documentai/apiv1/documentaipb"
)

func main() {
	ctx := context.Background()
	// This snippet has been automatically generated and should be regarded as a code template only.
	// It will require modifications to work:
	// - It may require correct/in-range values for request initialization.
	// - It may require specifying regional endpoints when creating the service client as shown in:
	//   https://pkg.go.dev/cloud.google.com/go#hdr-Client_Options
	c, err := documentai.NewDocumentProcessorClient(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	defer c.Close()

	req := &documentaipb.BatchProcessRequest{
		// TODO: Fill request struct fields.
		// See https://pkg.go.dev/cloud.google.com/go/documentai/apiv1/documentaipb#BatchProcessRequest.
	}
	op, err := c.BatchProcessDocuments(ctx, req)
	if err != nil {
		// TODO: Handle error.
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		// TODO: Handle error.
	}
	// TODO: Use resp.
	_ = resp
}

Java

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Java.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.


import com.google.api.gax.longrunning.OperationFuture;
import com.google.api.gax.paging.Page;
import com.google.cloud.documentai.v1.BatchDocumentsInputConfig;
import com.google.cloud.documentai.v1.BatchProcessMetadata;
import com.google.cloud.documentai.v1.BatchProcessRequest;
import com.google.cloud.documentai.v1.BatchProcessResponse;
import com.google.cloud.documentai.v1.Document;
import com.google.cloud.documentai.v1.DocumentOutputConfig;
import com.google.cloud.documentai.v1.DocumentOutputConfig.GcsOutputConfig;
import com.google.cloud.documentai.v1.DocumentProcessorServiceClient;
import com.google.cloud.documentai.v1.DocumentProcessorServiceSettings;
import com.google.cloud.documentai.v1.GcsDocument;
import com.google.cloud.documentai.v1.GcsDocuments;
import com.google.cloud.storage.Blob;
import com.google.cloud.storage.BlobId;
import com.google.cloud.storage.Bucket;
import com.google.cloud.storage.Storage;
import com.google.cloud.storage.StorageOptions;
import com.google.protobuf.util.JsonFormat;
import java.io.File;
import java.io.FileReader;
import java.io.IOException;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeUnit;
import java.util.concurrent.TimeoutException;

public class BatchProcessDocument {
  public static void batchProcessDocument()
      throws IOException, InterruptedException, TimeoutException, ExecutionException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String location = "your-project-location"; // Format is "us" or "eu".
    String processerId = "your-processor-id";
    String outputGcsBucketName = "your-gcs-bucket-name";
    String outputGcsPrefix = "PREFIX";
    String inputGcsUri = "gs://your-gcs-bucket/path/to/input/file.pdf";
    batchProcessDocument(
        projectId, location, processerId, inputGcsUri, outputGcsBucketName, outputGcsPrefix);
  }

  public static void batchProcessDocument(
      String projectId,
      String location,
      String processorId,
      String gcsInputUri,
      String gcsOutputBucketName,
      String gcsOutputUriPrefix)
      throws IOException, InterruptedException, TimeoutException, ExecutionException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created
    // once, and can be reused for multiple requests. After completing all of your
    // requests, call
    // the "close" method on the client to safely clean up any remaining background
    // resources.
    String endpoint = String.format("%s-documentai.googleapis.com:443", location);
    DocumentProcessorServiceSettings settings =
        DocumentProcessorServiceSettings.newBuilder().setEndpoint(endpoint).build();
    try (DocumentProcessorServiceClient client = DocumentProcessorServiceClient.create(settings)) {
      // The full resource name of the processor, e.g.:
      // projects/project-id/locations/location/processor/processor-id
      // You must create new processors in the Cloud Console first
      String name =
          String.format("projects/%s/locations/%s/processors/%s", projectId, location, processorId);

      GcsDocument gcsDocument =
          GcsDocument.newBuilder().setGcsUri(gcsInputUri).setMimeType("application/pdf").build();

      GcsDocuments gcsDocuments = GcsDocuments.newBuilder().addDocuments(gcsDocument).build();

      BatchDocumentsInputConfig inputConfig =
          BatchDocumentsInputConfig.newBuilder().setGcsDocuments(gcsDocuments).build();

      String fullGcsPath = String.format("gs://%s/%s/", gcsOutputBucketName, gcsOutputUriPrefix);
      GcsOutputConfig gcsOutputConfig = GcsOutputConfig.newBuilder().setGcsUri(fullGcsPath).build();

      DocumentOutputConfig documentOutputConfig =
          DocumentOutputConfig.newBuilder().setGcsOutputConfig(gcsOutputConfig).build();

      // Configure the batch process request.
      BatchProcessRequest request =
          BatchProcessRequest.newBuilder()
              .setName(name)
              .setInputDocuments(inputConfig)
              .setDocumentOutputConfig(documentOutputConfig)
              .build();

      OperationFuture<BatchProcessResponse, BatchProcessMetadata> future =
          client.batchProcessDocumentsAsync(request);

      // Batch process document using a long-running operation.
      // You can wait for now, or get results later.
      // Note: first request to the service takes longer than subsequent
      // requests.
      System.out.println("Waiting for operation to complete...");
      future.get();

      System.out.println("Document processing complete.");

      Storage storage = StorageOptions.newBuilder().setProjectId(projectId).build().getService();
      Bucket bucket = storage.get(gcsOutputBucketName);

      // List all of the files in the Storage bucket.
      Page<Blob> blobs = bucket.list(Storage.BlobListOption.prefix(gcsOutputUriPrefix + "/"));
      int idx = 0;
      for (Blob blob : blobs.iterateAll()) {
        if (!blob.isDirectory()) {
          System.out.printf("Fetched file #%d\n", ++idx);
          // Read the results

          // Download and store json data in a temp file.
          File tempFile = File.createTempFile("file", ".json");
          Blob fileInfo = storage.get(BlobId.of(gcsOutputBucketName, blob.getName()));
          fileInfo.downloadTo(tempFile.toPath());

          // Parse json file into Document.
          FileReader reader = new FileReader(tempFile);
          Document.Builder builder = Document.newBuilder();
          JsonFormat.parser().merge(reader, builder);

          Document document = builder.build();

          // Get all of the document text as one big string.
          String text = document.getText();

          // Read the text recognition output from the processor
          System.out.println("The document contains the following paragraphs:");
          Document.Page page1 = document.getPages(0);
          List<Document.Page.Paragraph> paragraphList = page1.getParagraphsList();
          for (Document.Page.Paragraph paragraph : paragraphList) {
            String paragraphText = getText(paragraph.getLayout().getTextAnchor(), text);
            System.out.printf("Paragraph text:%s\n", paragraphText);
          }

          // Form parsing provides additional output about
          // form-formatted PDFs. You must create a form
          // processor in the Cloud Console to see full field details.
          System.out.println("The following form key/value pairs were detected:");

          for (Document.Page.FormField field : page1.getFormFieldsList()) {
            String fieldName = getText(field.getFieldName().getTextAnchor(), text);
            String fieldValue = getText(field.getFieldValue().getTextAnchor(), text);

            System.out.println("Extracted form fields pair:");
            System.out.printf("\t(%s, %s))", fieldName, fieldValue);
          }

          // Clean up temp file.
          tempFile.deleteOnExit();
        }
      }
    }
  }

  // Extract shards from the text field
  private static String getText(Document.TextAnchor textAnchor, String text) {
    if (textAnchor.getTextSegmentsList().size() > 0) {
      int startIdx = (int) textAnchor.getTextSegments(0).getStartIndex();
      int endIdx = (int) textAnchor.getTextSegments(0).getEndIndex();
      return text.substring(startIdx, endIdx);
    }
    return "[NO TEXT]";
  }
}

Node.js

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Node.js.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION'; // Format is 'us' or 'eu'
// const processorId = 'YOUR_PROCESSOR_ID';
// const gcsInputUri = 'YOUR_SOURCE_PDF';
// const gcsOutputUri = 'YOUR_STORAGE_BUCKET';
// const gcsOutputUriPrefix = 'YOUR_STORAGE_PREFIX';

// Imports the Google Cloud client library
const {DocumentProcessorServiceClient} =
  require('@google-cloud/documentai').v1;
const {Storage} = require('@google-cloud/storage');

// Instantiates Document AI, Storage clients
const client = new DocumentProcessorServiceClient();
const storage = new Storage();

const {default: PQueue} = require('p-queue');

async function batchProcessDocument() {
  const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;

  // Configure the batch process request.
  const request = {
    name,
    inputDocuments: {
      gcsDocuments: {
        documents: [
          {
            gcsUri: gcsInputUri,
            mimeType: 'application/pdf',
          },
        ],
      },
    },
    documentOutputConfig: {
      gcsOutputConfig: {
        gcsUri: `${gcsOutputUri}/${gcsOutputUriPrefix}/`,
      },
    },
  };

  // Batch process document using a long-running operation.
  // You can wait for now, or get results later.
  // Note: first request to the service takes longer than subsequent
  // requests.
  const [operation] = await client.batchProcessDocuments(request);

  // Wait for operation to complete.
  await operation.promise();
  console.log('Document processing complete.');

  // Query Storage bucket for the results file(s).
  const query = {
    prefix: gcsOutputUriPrefix,
  };

  console.log('Fetching results ...');

  // List all of the files in the Storage bucket
  const [files] = await storage.bucket(gcsOutputUri).getFiles(query);

  // Add all asynchronous downloads to queue for execution.
  const queue = new PQueue({concurrency: 15});
  const tasks = files.map((fileInfo, index) => async () => {
    // Get the file as a buffer
    const [file] = await fileInfo.download();

    console.log(`Fetched file #${index + 1}:`);

    // The results stored in the output Storage location
    // are formatted as a document object.
    const document = JSON.parse(file.toString());
    const {text} = document;

    // Extract shards from the text field
    const getText = textAnchor => {
      if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
        return '';
      }

      // First shard in document doesn't have startIndex property
      const startIndex = textAnchor.textSegments[0].startIndex || 0;
      const endIndex = textAnchor.textSegments[0].endIndex;

      return text.substring(startIndex, endIndex);
    };

    // Read the text recognition output from the processor
    console.log('The document contains the following paragraphs:');

    const [page1] = document.pages;
    const {paragraphs} = page1;
    for (const paragraph of paragraphs) {
      const paragraphText = getText(paragraph.layout.textAnchor);
      console.log(`Paragraph text:\n${paragraphText}`);
    }

    // Form parsing provides additional output about
    // form-formatted PDFs. You  must create a form
    // processor in the Cloud Console to see full field details.
    console.log('\nThe following form key/value pairs were detected:');

    const {formFields} = page1;
    for (const field of formFields) {
      const fieldName = getText(field.fieldName.textAnchor);
      const fieldValue = getText(field.fieldValue.textAnchor);

      console.log('Extracted key value pair:');
      console.log(`\t(${fieldName}, ${fieldValue})`);
    }
  });
  await queue.addAll(tasks);
}

Python

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Python.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

import re
from typing import Optional

from google.api_core.client_options import ClientOptions
from google.api_core.exceptions import InternalServerError
from google.api_core.exceptions import RetryError
from google.cloud import documentai  # type: ignore
from google.cloud import storage

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_PROCESSOR_LOCATION" # Format is "us" or "eu"
# processor_id = "YOUR_PROCESSOR_ID" # Create processor before running sample
# gcs_output_uri = "YOUR_OUTPUT_URI" # Must end with a trailing slash `/`. Format: gs://bucket/directory/subdirectory/
# processor_version_id = "YOUR_PROCESSOR_VERSION_ID" # Optional. Example: pretrained-ocr-v1.0-2020-09-23

# TODO(developer): You must specify either `gcs_input_uri` and `mime_type` or `gcs_input_prefix`
# gcs_input_uri = "YOUR_INPUT_URI" # Format: gs://bucket/directory/file.pdf
# input_mime_type = "application/pdf"
# gcs_input_prefix = "YOUR_INPUT_URI_PREFIX" # Format: gs://bucket/directory/
# field_mask = "text,entities,pages.pageNumber"  # Optional. The fields to return in the Document object.


def batch_process_documents(
    project_id: str,
    location: str,
    processor_id: str,
    gcs_output_uri: str,
    processor_version_id: Optional[str] = None,
    gcs_input_uri: Optional[str] = None,
    input_mime_type: Optional[str] = None,
    gcs_input_prefix: Optional[str] = None,
    field_mask: Optional[str] = None,
    timeout: int = 400,
) -> None:
    # You must set the `api_endpoint` if you use a location other than "us".
    opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com")

    client = documentai.DocumentProcessorServiceClient(client_options=opts)

    if gcs_input_uri:
        # Specify specific GCS URIs to process individual documents
        gcs_document = documentai.GcsDocument(
            gcs_uri=gcs_input_uri, mime_type=input_mime_type
        )
        # Load GCS Input URI into a List of document files
        gcs_documents = documentai.GcsDocuments(documents=[gcs_document])
        input_config = documentai.BatchDocumentsInputConfig(gcs_documents=gcs_documents)
    else:
        # Specify a GCS URI Prefix to process an entire directory
        gcs_prefix = documentai.GcsPrefix(gcs_uri_prefix=gcs_input_prefix)
        input_config = documentai.BatchDocumentsInputConfig(gcs_prefix=gcs_prefix)

    # Cloud Storage URI for the Output Directory
    gcs_output_config = documentai.DocumentOutputConfig.GcsOutputConfig(
        gcs_uri=gcs_output_uri, field_mask=field_mask
    )

    # Where to write results
    output_config = documentai.DocumentOutputConfig(gcs_output_config=gcs_output_config)

    if processor_version_id:
        # The full resource name of the processor version, e.g.:
        # projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}
        name = client.processor_version_path(
            project_id, location, processor_id, processor_version_id
        )
    else:
        # The full resource name of the processor, e.g.:
        # projects/{project_id}/locations/{location}/processors/{processor_id}
        name = client.processor_path(project_id, location, processor_id)

    request = documentai.BatchProcessRequest(
        name=name,
        input_documents=input_config,
        document_output_config=output_config,
    )

    # BatchProcess returns a Long Running Operation (LRO)
    operation = client.batch_process_documents(request)

    # Continually polls the operation until it is complete.
    # This could take some time for larger files
    # Format: projects/{project_id}/locations/{location}/operations/{operation_id}
    try:
        print(f"Waiting for operation {operation.operation.name} to complete...")
        operation.result(timeout=timeout)
    # Catch exception when operation doesn't finish before timeout
    except (RetryError, InternalServerError) as e:
        print(e.message)

    # NOTE: Can also use callbacks for asynchronous processing
    #
    # def my_callback(future):
    #   result = future.result()
    #
    # operation.add_done_callback(my_callback)

    # After the operation is complete,
    # get output document information from operation metadata
    metadata = documentai.BatchProcessMetadata(operation.metadata)

    if metadata.state != documentai.BatchProcessMetadata.State.SUCCEEDED:
        raise ValueError(f"Batch Process Failed: {metadata.state_message}")

    storage_client = storage.Client()

    print("Output files:")
    # One process per Input Document
    for process in list(metadata.individual_process_statuses):
        # output_gcs_destination format: gs://BUCKET/PREFIX/OPERATION_NUMBER/INPUT_FILE_NUMBER/
        # The Cloud Storage API requires the bucket name and URI prefix separately
        matches = re.match(r"gs://(.*?)/(.*)", process.output_gcs_destination)
        if not matches:
            print(
                "Could not parse output GCS destination:",
                process.output_gcs_destination,
            )
            continue

        output_bucket, output_prefix = matches.groups()

        # Get List of Document Objects from the Output Bucket
        output_blobs = storage_client.list_blobs(output_bucket, prefix=output_prefix)

        # Document AI may output multiple JSON files per source file
        for blob in output_blobs:
            # Document AI should only output JSON files to GCS
            if blob.content_type != "application/json":
                print(
                    f"Skipping non-supported file: {blob.name} - Mimetype: {blob.content_type}"
                )
                continue

            # Download JSON File as bytes object and convert to Document Object
            print(f"Fetching {blob.name}")
            document = documentai.Document.from_json(
                blob.download_as_bytes(), ignore_unknown_fields=True
            )

            # For a full list of Document object attributes, please reference this page:
            # https://cloud.google.com/python/docs/reference/documentai/latest/google.cloud.documentai_v1.types.Document

            # Read the text recognition output from the processor
            print("The document contains the following text:")
            print(document.text)

Go

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Go.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

use Google\ApiCore\ApiException;
use Google\ApiCore\OperationResponse;
use Google\Cloud\DocumentAI\V1\BatchProcessRequest;
use Google\Cloud\DocumentAI\V1\BatchProcessResponse;
use Google\Cloud\DocumentAI\V1\Client\DocumentProcessorServiceClient;
use Google\Rpc\Status;

/**
 * LRO endpoint to batch process many documents. The output is written
 * to Cloud Storage as JSON in the [Document] format.
 *
 * @param string $name The resource name of
 *                     [Processor][google.cloud.documentai.v1.Processor] or
 *                     [ProcessorVersion][google.cloud.documentai.v1.ProcessorVersion].
 *                     Format: `projects/{project}/locations/{location}/processors/{processor}`,
 *                     or
 *                     `projects/{project}/locations/{location}/processors/{processor}/processorVersions/{processorVersion}`
 */
function batch_process_documents_sample(string $name): void
{
    // Create a client.
    $documentProcessorServiceClient = new DocumentProcessorServiceClient();

    // Prepare the request message.
    $request = (new BatchProcessRequest())
        ->setName($name);

    // Call the API and handle any network failures.
    try {
        /** @var OperationResponse $response */
        $response = $documentProcessorServiceClient->batchProcessDocuments($request);
        $response->pollUntilComplete();

        if ($response->operationSucceeded()) {
            /** @var BatchProcessResponse $result */
            $result = $response->getResult();
            printf('Operation successful with response data: %s' . PHP_EOL, $result->serializeToJsonString());
        } else {
            /** @var Status $error */
            $error = $response->getError();
            printf('Operation failed with error data: %s' . PHP_EOL, $error->serializeToJsonString());
        }
    } catch (ApiException $ex) {
        printf('Call failed with message: %s' . PHP_EOL, $ex->getMessage());
    }
}

/**
 * Helper to execute the sample.
 *
 * This sample has been automatically generated and should be regarded as a code
 * template only. It will require modifications to work:
 *  - It may require correct/in-range values for request initialization.
 *  - It may require specifying regional endpoints when creating the service client,
 *    please see the apiEndpoint client configuration option for more details.
 */
function callSample(): void
{
    $name = '[NAME]';

    batch_process_documents_sample($name);
}

Ruby

Per ulteriori informazioni, consulta la documentazione di riferimento dell'API Document AI Ruby.

Per autenticarti a Document AI, configura le credenziali predefinite dell'applicazione. Per ulteriori informazioni, consulta Configurare l'autenticazione per un ambiente di sviluppo locale.

require "google/cloud/document_ai/v1"

##
# Snippet for the batch_process_documents call in the DocumentProcessorService service
#
# This snippet has been automatically generated and should be regarded as a code
# template only. It will require modifications to work:
# - It may require correct/in-range values for request initialization.
# - It may require specifying regional endpoints when creating the service
# client as shown in https://cloud.google.com/ruby/docs/reference.
#
# This is an auto-generated example demonstrating basic usage of
# Google::Cloud::DocumentAI::V1::DocumentProcessorService::Client#batch_process_documents.
#
def batch_process_documents
  # Create a client object. The client can be reused for multiple calls.
  client = Google::Cloud::DocumentAI::V1::DocumentProcessorService::Client.new

  # Create a request. To set request fields, pass in keyword arguments.
  request = Google::Cloud::DocumentAI::V1::BatchProcessRequest.new

  # Call the batch_process_documents method.
  result = client.batch_process_documents request

  # The returned object is of type Gapic::Operation. You can use it to
  # check the status of an operation, cancel it, or wait for results.
  # Here is how to wait for a response.
  result.wait_until_done! timeout: 60
  if result.response?
    p result.response
  else
    puts "No response received."
  end
end

Crea batch di documenti con l'SDK Python

L'elaborazione batch consente un massimo di 1000 file per richiesta. Se hai più documenti da elaborare, devi suddividerli in più batch.

Document AI Toolbox è un SDK per Python che fornisce funzioni di utilità per Document AI. Una delle funzioni è creare batch di documenti da elaborare da una cartella Cloud Storage.

Per ulteriori informazioni su come Document AI Toolbox supporta il post-processing, consulta Gestire la risposta di elaborazione.

Esempi di codice

I seguenti esempi di codice mostrano come utilizzare Document AI Toolbox.

Batch di documenti


from google.cloud import documentai
from google.cloud.documentai_toolbox import gcs_utilities

# TODO(developer): Uncomment these variables before running the sample.
# Given unprocessed documents in path gs://bucket/path/to/folder
# gcs_bucket_name = "bucket"
# gcs_prefix = "path/to/folder"
# batch_size = 50


def create_batches_sample(
    gcs_bucket_name: str,
    gcs_prefix: str,
    batch_size: int = 50,
) -> None:
    # Creating batches of documents for processing
    batches = gcs_utilities.create_batches(
        gcs_bucket_name=gcs_bucket_name, gcs_prefix=gcs_prefix, batch_size=batch_size
    )

    print(f"{len(batches)} batch(es) created.")
    for batch in batches:
        print(f"{len(batch.gcs_documents.documents)} files in batch.")
        print(batch.gcs_documents.documents)

        # Use as input for batch_process_documents()
        # Refer to https://cloud.google.com/document-ai/docs/send-request
        # for how to send a batch processing request
        request = documentai.BatchProcessRequest(
            name="processor_name", input_documents=batch
        )
        print(request)