클라이언트 라이브러리를 사용하여 문서 처리

이 페이지에서는 선호하는 프로그래밍 언어로 Document AI API를 시작하는 방법을 보여줍니다.

시작하기 전에

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  3. Make sure that billing is enabled for your Google Cloud project.

  4. Enable the Document AI API.

    Enable the API

  5. Create a service account:

    1. In the Google Cloud console, go to the Create service account page.

      Go to Create service account
    2. Select your project.
    3. In the Service account name field, enter a name. The Google Cloud console fills in the Service account ID field based on this name.

      In the Service account description field, enter a description. For example, Service account for quickstart.

    4. Click Create and continue.
    5. Grant the Project > Owner role to the service account.

      To grant the role, find the Select a role list, then select Project > Owner.

    6. Click Continue.
    7. Click Done to finish creating the service account.

      Do not close your browser window. You will use it in the next step.

  6. Create a service account key:

    1. In the Google Cloud console, click the email address for the service account that you created.
    2. Click Keys.
    3. Click Add key, and then click Create new key.
    4. Click Create. A JSON key file is downloaded to your computer.
    5. Click Close.
  7. Set the environment variable GOOGLE_APPLICATION_CREDENTIALS to the path of the JSON file that contains your credentials. This variable applies only to your current shell session, so if you open a new session, set the variable again.

  8. In the Google Cloud console, on the project selector page, select or create a Google Cloud project.

    Go to project selector

  9. Make sure that billing is enabled for your Google Cloud project.

  10. Enable the Document AI API.

    Enable the API

  11. Create a service account:

    1. In the Google Cloud console, go to the Create service account page.

      Go to Create service account
    2. Select your project.
    3. In the Service account name field, enter a name. The Google Cloud console fills in the Service account ID field based on this name.

      In the Service account description field, enter a description. For example, Service account for quickstart.

    4. Click Create and continue.
    5. Grant the Project > Owner role to the service account.

      To grant the role, find the Select a role list, then select Project > Owner.

    6. Click Continue.
    7. Click Done to finish creating the service account.

      Do not close your browser window. You will use it in the next step.

  12. Create a service account key:

    1. In the Google Cloud console, click the email address for the service account that you created.
    2. Click Keys.
    3. Click Add key, and then click Create new key.
    4. Click Create. A JSON key file is downloaded to your computer.
    5. Click Close.
  13. Set the environment variable GOOGLE_APPLICATION_CREDENTIALS to the path of the JSON file that contains your credentials. This variable applies only to your current shell session, so if you open a new session, set the variable again.

클라이언트 라이브러리 설치

C#

C# 개발 환경 설정에 관한 자세한 내용은 C# 개발 환경 설정 가이드를 참조하세요.

Install-Package Google.Cloud.DocumentAI.V1 -Pre

Go

go get cloud.google.com/go/documentai

Java

자바 개발 환경 설정에 관한 자세한 내용은 자바 개발 환경 설정 가이드를 참조하세요.

If you are using Maven, add the following to your pom.xml file. For more information about BOMs, see The Google Cloud Platform Libraries BOM.

<dependencyManagement>
  <dependencies>
    <dependency>
      <groupId>com.google.cloud</groupId>
      <artifactId>libraries-bom</artifactId>
      <version>26.55.0</version>
      <type>pom</type>
      <scope>import</scope>
    </dependency>
  </dependencies>
</dependencyManagement>

<dependencies>
  <dependency>
    <groupId>com.google.cloud</groupId>
    <artifactId>google-cloud-document-ai</artifactId>
  </dependency>
</dependencies>

If you are using Gradle, add the following to your dependencies:

implementation 'com.google.cloud:google-cloud-document-ai:2.62.0'

If you are using sbt, add the following to your dependencies:

libraryDependencies += "com.google.cloud" % "google-cloud-document-ai" % "2.62.0"

If you're using Visual Studio Code, IntelliJ, or Eclipse, you can add client libraries to your project using the following IDE plugins:

The plugins provide additional functionality, such as key management for service accounts. Refer to each plugin's documentation for details.

Node.js

Node.js 개발 환경 설정에 관한 자세한 내용은 Node.js 개발 환경 설정 가이드를 참조하세요.

npm install @google-cloud/documentai

PHP

composer require google/cloud-document-ai

Python

Python 개발 환경 설정에 관한 자세한 내용은 Python 개발 환경 설정 가이드를 참조하세요.

pip install --upgrade google-cloud-documentai

Ruby

Ruby 개발 환경 설정에 관한 자세한 내용은 Ruby 개발 환경 설정 가이드를 참조하세요.

gem install google-cloud-document_ai

문서 처리

Document AI API를 사용하여 로컬 PDF 문서에서 정보를 요청합니다. 다음 샘플을 실행하려면 먼저 UI에서 프로세서를 만들어야 합니다.

콘솔

  1. Google Cloud 콘솔의 Document AI 섹션에서 Processors 페이지로 이동합니다.

    프로세서 페이지로 이동

  2. 프로세서 만들기를 선택합니다.

  3. 만들려는 목록에서 프로세서 유형을 클릭합니다.

  4. 측면 프로세서 만들기 창에서 프로세서 이름을 지정합니다.

  5. 목록에서 리전을 선택합니다.

  6. 만들기를 클릭하여 프로세서를 생성합니다.

프로세서를 만들고 프로세서 ID를 가져온 후 다음 코드를 실행하여 개별 문서 처리를 요청합니다.

C#

자세한 내용은 Document AI C# API 참조 문서를 참고하세요.

Document AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


using Google.Cloud.DocumentAI.V1;
using Google.Protobuf;
using System;
using System.IO;

public class QuickstartSample
{
    public Document Quickstart(
        string projectId = "your-project-id",
        string locationId = "your-processor-location",
        string processorId = "your-processor-id",
        string localPath = "my-local-path/my-file-name",
        string mimeType = "application/pdf"
    )
    {
        // Create client
        var client = new DocumentProcessorServiceClientBuilder
        {
            Endpoint = $"{locationId}-documentai.googleapis.com"
        }.Build();

        // Read in local file
        using var fileStream = File.OpenRead(localPath);
        var rawDocument = new RawDocument
        {
            Content = ByteString.FromStream(fileStream),
            MimeType = mimeType
        };

        // Initialize request argument(s)
        var request = new ProcessRequest
        {
            Name = ProcessorName.FromProjectLocationProcessor(projectId, locationId, processorId).ToString(),
            RawDocument = rawDocument
        };

        // Make the request
        var response = client.ProcessDocument(request);

        var document = response.Document;
        Console.WriteLine(document.Text);
        return document;
    }
}

C++

자세한 내용은 Document AI C++ API 참조 문서를 참고하세요.

Document AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


#include "google/cloud/documentai/v1/document_processor_client.h"
#include "google/cloud/location.h"
#include <fstream>
#include <iostream>
#include <string>

int main(int argc, char* argv[]) try {
  if (argc != 5) {
    std::cerr << "Usage: " << argv[0]
              << " project-id location-id processor-id filename (PDF only)\n";
    return 1;
  }

  std::string const location_id = argv[2];
  if (location_id != "us" && location_id != "eu") {
    std::cerr << "location-id must be either 'us' or 'eu'\n";
    return 1;
  }
  auto const location = google::cloud::Location(argv[1], location_id);

  namespace documentai = ::google::cloud::documentai_v1;
  auto client = documentai::DocumentProcessorServiceClient(
      documentai::MakeDocumentProcessorServiceConnection(
          location.location_id()));

  google::cloud::documentai::v1::ProcessRequest req;
  req.set_name(location.FullName() + "/processors/" + argv[3]);
  req.set_skip_human_review(true);
  auto& doc = *req.mutable_raw_document();
  doc.set_mime_type("application/pdf");
  std::ifstream is(argv[4]);
  doc.set_content(std::string{std::istreambuf_iterator<char>(is), {}});

  auto resp = client.ProcessDocument(std::move(req));
  if (!resp) throw std::move(resp).status();
  std::cout << resp->document().text() << "\n";

  return 0;
} catch (google::cloud::Status const& status) {
  std::cerr << "google::cloud::Status thrown: " << status << "\n";
  return 1;
}

Go

자세한 내용은 Document AI Go API 참조 문서를 참고하세요.

Document AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import (
	"context"
	"flag"
	"fmt"
	"os"

	documentai "cloud.google.com/go/documentai/apiv1"
	"cloud.google.com/go/documentai/apiv1/documentaipb"
	"google.golang.org/api/option"
)

func main() {
	projectID := flag.String("project_id", "PROJECT_ID", "Cloud Project ID")
	location := flag.String("location", "us", "The Processor location")
	// Create a Processor before running sample
	processorID := flag.String("processor_id", "aaaaaaaa", "The Processor ID")
	filePath := flag.String("file_path", "invoice.pdf", "The path to the file to parse")
	mimeType := flag.String("mime_type", "application/pdf", "The mimeType of the file")
	flag.Parse()

	ctx := context.Background()

	endpoint := fmt.Sprintf("%s-documentai.googleapis.com:443", *location)
	client, err := documentai.NewDocumentProcessorClient(ctx, option.WithEndpoint(endpoint))
	if err != nil {
		fmt.Println(fmt.Errorf("error creating Document AI client: %w", err))
	}
	defer client.Close()

	// Open local file.
	data, err := os.ReadFile(*filePath)
	if err != nil {
		fmt.Println(fmt.Errorf("os.ReadFile: %w", err))
	}

	req := &documentaipb.ProcessRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/processors/%s", *projectID, *location, *processorID),
		Source: &documentaipb.ProcessRequest_RawDocument{
			RawDocument: &documentaipb.RawDocument{
				Content:  data,
				MimeType: *mimeType,
			},
		},
	}
	resp, err := client.ProcessDocument(ctx, req)
	if err != nil {
		fmt.Println(fmt.Errorf("processDocument: %w", err))
	}

	// Handle the results.
	document := resp.GetDocument()
	fmt.Printf("Document Text: %s", document.GetText())
}

Java

자세한 내용은 Document AI Java API 참조 문서를 참고하세요.

Document AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

import com.google.cloud.documentai.v1.Document;
import com.google.cloud.documentai.v1.DocumentProcessorServiceClient;
import com.google.cloud.documentai.v1.DocumentProcessorServiceSettings;
import com.google.cloud.documentai.v1.ProcessRequest;
import com.google.cloud.documentai.v1.ProcessResponse;
import com.google.cloud.documentai.v1.RawDocument;
import com.google.protobuf.ByteString;
import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Paths;
import java.util.List;
import java.util.concurrent.ExecutionException;
import java.util.concurrent.TimeoutException;

public class QuickStart {
  public static void main(String[] args)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "your-project-id";
    String location = "your-project-location"; // Format is "us" or "eu".
    String processorId = "your-processor-id";
    String filePath = "path/to/input/file.pdf";
    quickStart(projectId, location, processorId, filePath);
  }

  public static void quickStart(
      String projectId, String location, String processorId, String filePath)
      throws IOException, InterruptedException, ExecutionException, TimeoutException {
    // Initialize client that will be used to send requests. This client only needs
    // to be created
    // once, and can be reused for multiple requests. After completing all of your
    // requests, call
    // the "close" method on the client to safely clean up any remaining background
    // resources.
    String endpoint = String.format("%s-documentai.googleapis.com:443", location);
    DocumentProcessorServiceSettings settings =
        DocumentProcessorServiceSettings.newBuilder().setEndpoint(endpoint).build();
    try (DocumentProcessorServiceClient client = DocumentProcessorServiceClient.create(settings)) {
      // The full resource name of the processor, e.g.:
      // projects/project-id/locations/location/processor/processor-id
      // You must create new processors in the Cloud Console first
      String name =
          String.format("projects/%s/locations/%s/processors/%s", projectId, location, processorId);

      // Read the file.
      byte[] imageFileData = Files.readAllBytes(Paths.get(filePath));

      // Convert the image data to a Buffer and base64 encode it.
      ByteString content = ByteString.copyFrom(imageFileData);

      RawDocument document =
          RawDocument.newBuilder().setContent(content).setMimeType("application/pdf").build();

      // Configure the process request.
      ProcessRequest request =
          ProcessRequest.newBuilder().setName(name).setRawDocument(document).build();

      // Recognizes text entities in the PDF document
      ProcessResponse result = client.processDocument(request);
      Document documentResponse = result.getDocument();

      // Get all of the document text as one big string
      String text = documentResponse.getText();

      // Read the text recognition output from the processor
      System.out.println("The document contains the following paragraphs:");
      Document.Page firstPage = documentResponse.getPages(0);
      List<Document.Page.Paragraph> paragraphs = firstPage.getParagraphsList();

      for (Document.Page.Paragraph paragraph : paragraphs) {
        String paragraphText = getText(paragraph.getLayout().getTextAnchor(), text);
        System.out.printf("Paragraph text:\n%s\n", paragraphText);
      }
    }
  }

  // Extract shards from the text field
  private static String getText(Document.TextAnchor textAnchor, String text) {
    if (textAnchor.getTextSegmentsList().size() > 0) {
      int startIdx = (int) textAnchor.getTextSegments(0).getStartIndex();
      int endIdx = (int) textAnchor.getTextSegments(0).getEndIndex();
      return text.substring(startIdx, endIdx);
    }
    return "[NO TEXT]";
  }
}

Node.js

자세한 내용은 Document AI Node.js API 참조 문서를 참고하세요.

Document AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'YOUR_PROJECT_LOCATION'; // Format is 'us' or 'eu'
// const processorId = 'YOUR_PROCESSOR_ID'; // Create processor in Cloud Console
// const filePath = '/path/to/local/pdf';

const {DocumentProcessorServiceClient} =
  require('@google-cloud/documentai').v1;

// Instantiates a client
// apiEndpoint regions available: eu-documentai.googleapis.com, us-documentai.googleapis.com (Required if using eu based processor)
// const client = new DocumentProcessorServiceClient({apiEndpoint: 'eu-documentai.googleapis.com'});
const client = new DocumentProcessorServiceClient();

async function quickstart() {
  // The full resource name of the processor, e.g.:
  // projects/project-id/locations/location/processor/processor-id
  // You must create new processors in the Cloud Console first
  const name = `projects/${projectId}/locations/${location}/processors/${processorId}`;

  // Read the file into memory.
  const fs = require('fs').promises;
  const imageFile = await fs.readFile(filePath);

  // Convert the image data to a Buffer and base64 encode it.
  const encodedImage = Buffer.from(imageFile).toString('base64');

  const request = {
    name,
    rawDocument: {
      content: encodedImage,
      mimeType: 'application/pdf',
    },
  };

  // Recognizes text entities in the PDF document
  const [result] = await client.processDocument(request);
  const {document} = result;

  // Get all of the document text as one big string
  const {text} = document;

  // Extract shards from the text field
  const getText = textAnchor => {
    if (!textAnchor.textSegments || textAnchor.textSegments.length === 0) {
      return '';
    }

    // First shard in document doesn't have startIndex property
    const startIndex = textAnchor.textSegments[0].startIndex || 0;
    const endIndex = textAnchor.textSegments[0].endIndex;

    return text.substring(startIndex, endIndex);
  };

  // Read the text recognition output from the processor
  console.log('The document contains the following paragraphs:');
  const [page1] = document.pages;
  const {paragraphs} = page1;

  for (const paragraph of paragraphs) {
    const paragraphText = getText(paragraph.layout.textAnchor);
    console.log(`Paragraph text:\n${paragraphText}`);
  }
}

PHP

자세한 내용은 Document AI PHP API 참조 문서를 참고하세요.

Document AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

# Includes the autoloader for libraries installed with composer
require __DIR__ . '/vendor/autoload.php';

# Imports the Google Cloud client library
use Google\Cloud\DocumentAI\V1\DocumentProcessorServiceClient;
use Google\Cloud\DocumentAI\V1\RawDocument;

$projectId = 'YOUR_PROJECT_ID'; # Your Google Cloud Platform project ID
$location = 'us'; # Your Processor Location
$processor = 'YOUR_PROCESSOR_ID'; # Your Processor ID

# Create Client
$client = new DocumentProcessorServiceClient();

# Local File Path
$documentPath = 'resources/invoice.pdf';

# Read in File Contents
$handle = fopen($documentPath, 'rb');
$contents = fread($handle, filesize($documentPath));
fclose($handle);

# Load File Contents into RawDocument
$rawDocument = new RawDocument([
    'content' => $contents,
    'mime_type' => 'application/pdf'
]);

# Fully-qualified Processor Name
$name = $client->processorName($projectId, $location, $processor);

# Make Processing Request
$response = $client->processDocument($name, [
    'rawDocument' => $rawDocument
]);

# Print Document Text
printf('Document Text: %s', $response->getDocument()->getText());

Python

자세한 내용은 Document AI Python API 참조 문서를 참고하세요.

Document AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.


from google.api_core.client_options import ClientOptions
from google.cloud import documentai  # type: ignore

# TODO(developer): Uncomment these variables before running the sample.
# project_id = "YOUR_PROJECT_ID"
# location = "YOUR_PROCESSOR_LOCATION"  # Format is "us" or "eu"
# file_path = "/path/to/local/pdf"
# processor_display_name = "YOUR_PROCESSOR_DISPLAY_NAME" # Must be unique per project, e.g.: "My Processor"


def quickstart(
    project_id: str,
    location: str,
    file_path: str,
    processor_display_name: str = "My Processor",
):
    # You must set the `api_endpoint`if you use a location other than "us".
    opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com")

    client = documentai.DocumentProcessorServiceClient(client_options=opts)

    # The full resource name of the location, e.g.:
    # `projects/{project_id}/locations/{location}`
    parent = client.common_location_path(project_id, location)

    # Create a Processor
    processor = client.create_processor(
        parent=parent,
        processor=documentai.Processor(
            type_="OCR_PROCESSOR",  # Refer to https://cloud.google.com/document-ai/docs/create-processor for how to get available processor types
            display_name=processor_display_name,
        ),
    )

    # Print the processor information
    print(f"Processor Name: {processor.name}")

    # Read the file into memory
    with open(file_path, "rb") as image:
        image_content = image.read()

    # Load binary data
    raw_document = documentai.RawDocument(
        content=image_content,
        mime_type="application/pdf",  # Refer to https://cloud.google.com/document-ai/docs/file-types for supported file types
    )

    # Configure the process request
    # `processor.name` is the full resource name of the processor, e.g.:
    # `projects/{project_id}/locations/{location}/processors/{processor_id}`
    request = documentai.ProcessRequest(name=processor.name, raw_document=raw_document)

    result = client.process_document(request=request)

    # For a full list of `Document` object attributes, reference this page:
    # https://cloud.google.com/document-ai/docs/reference/rest/v1/Document
    document = result.document

    # Read the text recognition output from the processor
    print("The document contains the following text:")
    print(document.text)

Ruby

자세한 내용은 Document AI Ruby API 참조 문서를 참고하세요.

Document AI에 인증하려면 애플리케이션 기본 사용자 인증 정보를 설정합니다. 자세한 내용은 로컬 개발 환경의 인증 설정을 참조하세요.

require "google/cloud/document_ai/v1"

##
# Document AI quickstart
#
# @param project_id [String] Your Google Cloud project (e.g. "my-project")
# @param location_id [String] Your Processor Location (e.g. "us")
# @param processor_id [String] Your Processor ID (e.g. "a14dae8f043b60bd")
# @param file_path [String] Path to Local File (e.g. "invoice.pdf")
# @param mime_type [String] Refer to https://cloud.google.com/document-ai/docs/file-types (e.g. "application/pdf")
#
def quickstart project_id:, location_id:, processor_id:, file_path:, mime_type:
  # Create the Document AI client.
  client = ::Google::Cloud::DocumentAI::V1::DocumentProcessorService::Client.new do |config|
    config.endpoint = "#{location_id}-documentai.googleapis.com"
  end

  # Build the resource name from the project.
  name = client.processor_path(
    project: project_id,
    location: location_id,
    processor: processor_id
  )

  # Read the bytes into memory
  content = File.binread file_path

  # Create request
  request = Google::Cloud::DocumentAI::V1::ProcessRequest.new(
    skip_human_review: true,
    name: name,
    raw_document: {
      content: content,
      mime_type: mime_type
    }
  )

  # Process document
  response = client.process_document request

  # Handle response
  puts response.document.text
end

축하합니다. Document AI에 첫 번째 요청을 보냈습니다.

어땠나요?

삭제

이 빠른 시작에서 사용한 리소스 비용이 Google 계정에 청구되지 않도록 하려면 다음 단계를 따르세요.

다음 단계

Document AI API 클라이언트 라이브러리에 대해 자세히 알아보세요.