Migrazione delle versioni del processore
Questa pagina contiene i passaggi per eseguire la migrazione delle versioni del processore addestrato di Document AI da un progetto all'altro, nonché lo schema e i campioni del set di dati dal processore di origine a quello di destinazione. Questi passaggi automatizzano il processo di importazione della versione del processore, del relativo deployment e dell'impostazione come versione predefinita nel progetto di destinazione.
Prima di iniziare
- Ottieni un Google Cloud ID progetto.
- Avere l'ID del processore Document AI.
- Avere Cloud Storage.
- Utilizza Python: Jupyter Notebook (Vertex AI).
- Sono necessarie autorizzazioni per concedere l'accesso all'account di servizio nei progetti di origine e di destinazione.
Procedura dettagliata
La procedura è descritta nei passaggi che seguono.
Passaggio 1: identifica l'account di servizio associato al notebook Vertex AI
!gcloud config list account
Output:
[core]
account = example@automl-project.iam.gserviceaccount.com
Your active configuration is: [default]
Passaggio 2: concedi le autorizzazioni necessarie all'account di servizio
Nel Google Cloud progetto che rappresenta la destinazione prevista per la migrazione, aggiungi l'account di servizio acquisito nel passaggio precedente come entità e assegna i due seguenti ruoli:
- Document AI Administrator
- Amministratore Storage
Per ulteriori informazioni, consulta Concedere i ruoli agli account di servizio e Chiavi di crittografia gestite dal cliente (CMEK).
Affinché la migrazione funzioni, l'account di servizio utilizzato per eseguire questo notebook deve avere:
- Ruoli nei progetti di origine e di destinazione per creare il bucket del set di dati o crearlo se non esiste, nonché autorizzazioni di lettura e scrittura per tutti gli oggetti.
- Il ruolo Editor di Document AI nel progetto di origine come descritto in Importa una versione del processore.
Scarica una chiave JSON per l'account di servizio, in modo da poter eseguire l'autenticazione e l'autorizzazione come account di servizio. Per saperne di più, consulta la sezione Chiavi dell'account di servizio.
Successivo:
- Vai all'account di servizio.
- Seleziona l'account di servizio destinato a eseguire questa attività.
- Vai alla scheda Chiavi, fai clic su
Add Key
e scegli Crea nuova chiave. - Seleziona il tipo di chiave (preferibilmente JSON).
Fai clic su
Create
e scarica in un percorso specifico.Aggiorna il percorso nella variabile
service_account_key
nel seguente snippet.
service_account_key='path_to_sa_key.json'
from google.oauth2 import service_account
from google.cloud import storage
# Authenticate the service account
credentials = service_account.Credentials.from_service_account_file(
service_account_key
)
# pass this credentials variable to all client initializations
# storage_client = storage.Client(credentials=credentials)
# docai_client = documentai.DocumentProcessorServiceClient(credentials=credentials)
Passaggio 3: importa le librerie
import time
from pathlib import Path
from typing import Optional, Tuple
from google.cloud.documentai_v1beta3.services.document_service import pagers
from google.api_core.client_options import ClientOptions
from google.api_core.operation import Operation
from google.cloud import documentai_v1beta3 as documentai
from google.cloud import storage
from tqdm import tqdm
Passaggio 4: inserisci i dettagli
- source_project_id: fornisci l'ID progetto di origine.
- source_location: fornisci la posizione del responsabile dell'origine (
us
oeu
). - source_processor_id: fornisci Google Cloud l'ID del processore Document AI.
- source_processor_version_to_import: fornisci Google Cloud l'ID versione del processore Document AI per la versione addestrata.
- migrate_dataset: specifica questo valore come
True
oFalse
. Se vuoi eseguire la migrazione del set di dati dal responsabile del trattamento di origine a quello di destinazione, specificaTrue
, altrimentiFalse
. Il valore predefinito èFalse
. - source_exported_gcs_path: fornisci il percorso di Cloud Storage per archiviare i file JSON.
- destination_project_id: fornisci l'ID progetto di destinazione.
- destination_processor_id: fornisci l' Google Cloud ID del processore Document AI
""
oprocessor_id
del progetto di destinazione.
source_project_id = "source-project-id"
source_location = "processor-location"
source_processor_id = "source-processor-id"
source_processor_version_to_import = "source-processor-version-id"
migrate_dataset = False # Either True or False
source_exported_gcs_path = (
"gs://bucket/path/to/export_dataset/"
)
destination_project_id = "< destination-project-id >"
# Give an empty string if you wish to create a new processor
destination_processor_id = ""
Passaggio 5: esegui il codice
import time
from pathlib import Path
from typing import Optional, Tuple
from google.cloud.documentai_v1beta3.services.document_service import pagers
from google.api_core.client_options import ClientOptions
from google.api_core.operation import Operation
from google.cloud import documentai_v1beta3 as documentai
from google.cloud import storage
from tqdm import tqdm
source_project_id = "source-project-id"
source_location = "processor-location"
source_processor_id = "source-processor-id"
source_processor_version_to_import = "source-processor-version-id"
migrate_dataset = False # Either True or False
source_exported_gcs_path = (
"gs://bucket/path/to/export_dataset/"
)
destination_project_id = "< destination-project-id >"
# Give empty string if you wish to create a new processor
destination_processor_id = ""
exported_bucket_name = source_exported_gcs_path.split("/")[2]
exported_bucket_path_prefix = "/".join(source_exported_gcs_path.split("/")[3:])
destination_location = source_location
def sample_get_processor(project_id: str, processor_id: str, location: str)->Tuple[str, str]:
"""
This function returns Processor Display Name and Type of Processor from source project
Args:
project_id (str): Project ID
processor_id (str): Document AI Processor ID
location (str): Processor Location
Returns:
Tuple[str, str]: Returns Processor Display name and type
"""
client = documentai.DocumentProcessorServiceClient()
print(
f"Fetching processor({processor_id}) details from source project ({project_id})"
)
name = f"projects/{project_id}/locations/{location}/processors/{processor_id}"
request = documentai.GetProcessorRequest(
name=name,
)
response = client.get_processor(request=request)
print(f"Processor Name: {response.name}")
print(f"Processor Display Name: {response.display_name}")
print(f"Processor Type: {response.type_}")
return response.display_name, response.type_
def sample_create_processor(project_id: str, location: str, display_name: str, processor_type: str)->documentai.Processor:
"""It will create Processor in Destination project
Args:
project_id (str): Project ID
location (str): Location fo processor
display_name (str): Processor Display Name
processor_type (str): Google Cloud Document AI Processor type
Returns:
documentai.Processor: Returns details abouts newly created processor
"""
client = documentai.DocumentProcessorServiceClient()
request = documentai.CreateProcessorRequest(
parent=f"projects/{project_id}/locations/{location}",
processor={
"type_": processor_type,
"display_name": display_name,
},
)
print(f"Creating Processor in project: {project_id} in location: {location}")
print(f"Display Name: {display_name} & Processor Type: {processor_type}")
res = client.create_processor(request=request)
return res
def initialize_dataset(project_id: str, processor_id: str, location: str)-> Operation:
"""It will configure dataset for target processor in destination project
Args:
project_id (str): Project ID
processor_id (str): DocuemntAI Processor ID
location (str): Processor Location
Returns:
Operation: An object representing a long-running operation
"""
# opts = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com")
client = documentai.DocumentServiceClient() # client_options=opts
dataset = documentai.types.Dataset(
name=f"projects/{project_id}/locations/{location}/processors/{processor_id}/dataset",
state=3,
unmanaged_dataset_config={},
spanner_indexing_config={},
)
request = documentai.types.UpdateDatasetRequest(dataset=dataset)
print(
f"Configuring Dataset in project: {project_id} for processor: {processor_id}"
)
response = client.update_dataset(request=request)
return response
def get_dataset_schema(project_id: str, processor_id: str, location: str)->documentai.DatasetSchema:
"""It helps to fetch processor schema
Args:
project_id (str): Project ID
processor_id (str): DocumentAI Processor ID
location (str): Processor Location
Returns:
documentai.DatasetSchema: Return deails about Processor Dataset Schema
"""
# Create a client
processor_name = (
f"projects/{project_id}/locations/{location}/processors/{processor_id}"
)
client = documentai.DocumentServiceClient()
request = documentai.GetDatasetSchemaRequest(
name=processor_name + "/dataset/datasetSchema"
)
# Make the request
print(f"Fetching schema from source processor: {processor_id}")
response = client.get_dataset_schema(request=request)
return response
def upload_dataset_schema(schema: documentai.DatasetSchema)->documentai.DatasetSchema:
"""It helps to update the schema in destination processor
Args:
schema (documentai.DatasetSchema): Document AI Processor Schema details & Metadata
Returns:
documentai.DatasetSchema: Returns Dataset Schema object
"""
client = documentai.DocumentServiceClient()
request = documentai.UpdateDatasetSchemaRequest(dataset_schema=schema)
print("Updating Schema in destination processor")
res = client.update_dataset_schema(request=request)
return res
def store_document_as_json(document: str, bucket_name: str, file_name: str)->None:
"""It helps to upload data to Cloud Storage and stores as a blob
Args:
document (str): Processor response in json string format
bucket_name (str): Cloud Storage bucket name
file_name (str): Cloud Storage blob uri
"""
print(f"\tUploading file to Cloud Storage gs://{bucket_name}/{file_name}")
storage_client = storage.Client()
process_result_bucket = storage_client.get_bucket(bucket_name)
document_blob = storage.Blob(
name=str(Path(file_name)), bucket=process_result_bucket
)
document_blob.upload_from_string(document, content_type="application/json")
def list_documents(project_id: str, location: str, processor: str, page_size: Optional[int]=100, page_token: Optional[str]="")->pagers.ListDocumentsPager:
"""This function helps to list the samples present in processor dataset
Args:
project_id (str): Project ID
location (str): Processor Location
processor (str): DocumentAI Processor ID
page_size (Optional[int], optional): The maximum number of documents to return. Defaults to 100.
page_token (Optional[str], optional): A page token, received from a previous ListDocuments call. Defaults to "".
Returns:
pagers.ListDocumentsPager: Returns all details about documents present in Processor Dataset
"""
client = documentai.DocumentServiceClient()
dataset = (
f"projects/{project_id}/locations/{location}/processors/{processor}/dataset"
)
request = documentai.types.ListDocumentsRequest(
dataset=dataset,
page_token=page_token,
page_size=page_size,
return_total_size=True,
)
print(f"Listingll documents/Samples present in processor: {processor}")
operation = client.list_documents(request)
return operation
def get_document(project_id: str, location: str, processor: str, doc_id: documentai.DocumentId)->documentai.GetDocumentResponse:
"""It will fetch data for individual sample/document present in dataset
Args:
project_id (str): Project ID
location (str): Processor Location
processor (str): Document AI Processor ID
doc_id (documentai.DocumentId): Document identifier
Returns:
documentai.GetDocumentResponse: Returns data related to doc_id
"""
client = documentai.DocumentServiceClient()
dataset = (
f"projects/{project_id}/locations/{location}/processors/{processor}/dataset"
)
request = documentai.GetDocumentRequest(dataset=dataset, document_id=doc_id)
operation = client.get_document(request)
return operation
def import_documents(project_id: str, processor_id: str, location: str, gcs_path: str)->Operation:
"""It helps to import samples/docuemnts from Cloud Storage path to processor via API call
Args:
project_id (str): Project ID
processor_id (str): Document AI Processor ID
location (str): Processor Location
gcs_path (str): Cloud Storage path uri prefix
Returns:
Operation: An object representing a long-running operation
"""
client = documentai.DocumentServiceClient()
dataset = (
f"projects/{project_id}/locations/{location}/processors/{processor_id}/dataset"
)
request = documentai.ImportDocumentsRequest(
dataset=dataset,
batch_documents_import_configs=[
{
"dataset_split": "DATASET_SPLIT_TRAIN",
"batch_input_config": {
"gcs_prefix": {"gcs_uri_prefix": gcs_path + "train/"}
},
},
{
"dataset_split": "DATASET_SPLIT_TEST",
"batch_input_config": {
"gcs_prefix": {"gcs_uri_prefix": gcs_path + "test/"}
},
},
{
"dataset_split": "DATASET_SPLIT_UNASSIGNED",
"batch_input_config": {
"gcs_prefix": {"gcs_uri_prefix": gcs_path + "unassigned/"}
},
},
],
)
print(
f"Importing Documents/samples from {gcs_path} to corresponding tran_test_unassigned sections"
)
response = client.import_documents(request=request)
return response
def import_processor_version(source_processor_version_name: str, destination_processor_name: str)->Operation:
"""It helps to import processor version from source processor to destanation processor
Args:
source_processor_version_name (str): source processor name in this format projects/{project}/locations/{location}/processors/{processor}
destination_processor_name (str): destination processor name in this format projects/{project}/locations/{location}/processors/{processor}
Returns:
Operation: An object representing a long-running operation
"""
from google.cloud import documentai_v1beta3
# provide the source version(to copy) processor details in the following format
client = documentai_v1beta3.DocumentProcessorServiceClient()
# provide the new processor name in the parent variable in format 'projects/{project_number}/locations/{location}/processors/{new_processor_id}'
import google.cloud.documentai_v1beta3 as documentai
op_import_version_req = (
documentai.types.document_processor_service.ImportProcessorVersionRequest(
processor_version_source=source_processor_version_name,
parent=destination_processor_name,
)
)
print("Importing processor from source to destination")
print(f"\tSource: {source_processor_version_name}")
print(f"\tDestination: {destination_processor_name}")
# copying the processor
operation = client.import_processor_version(request=op_import_version_req)
print(operation.metadata)
print("Waitin for operation to complete...")
operation.result()
return operation
def deploy_and_set_default_processor_version(
project_id: str, location: str, processor_id: str, processor_version_id: str
)->None:
"""It helps to deploy to imported processor version and set it as default version
Args:
project_id (str): Project ID
location (str): Processor Location
processor_id (str): Document AI Processor ID
processor_version_id (str): Document AI Processor Version ID
"""
# Construct the resource name of the processor version
processor_name = (
f"projects/{project_id}/locations/{location}/processors/{processor_id}"
)
default_processor_version_name = f"projects/{project_id}/locations/{location}/processors/{processor_id}/processorVersions/{processor_version_id}"
# Initialize the Document AI client
client_options = ClientOptions(api_endpoint=f"{location}-documentai.googleapis.com")
client = documentai.DocumentProcessorServiceClient(client_options=client_options)
# Deploy the processor version
operation = client.deploy_processor_version(name=default_processor_version_name)
print(f"Deploying processor version: {operation.operation.name}")
print("Waiting for operation to complete...")
result = operation.result()
print("Processor version deployed")
# Set the deployed version as the default version
request = documentai.SetDefaultProcessorVersionRequest(
processor=processor_name,
default_processor_version=default_processor_version_name,
)
operation = client.set_default_processor_version(request=request)
print(f"Setting default processor version: {operation.operation.name}")
operation.result()
print(f"Default processor version set {default_processor_version_name}")
def main(destination_processor_id: str, migrate_dataset: bool = False)->None:
"""Entry function to perform Processor Migration from Source Project to Destination project
Args:
destination_processor_id (str): Either empty string or processor id in desination project
"""
# Checking processor id of destination project
if destination_processor_id == "":
# Fetching Processor Display Name and Type of Processor from source project
display_name, processor_type = sample_get_processor(
source_project_id, source_processor_id, source_location
)
# Creating Processor in Destination project
des_processor = sample_create_processor(
destination_project_id, destination_location, display_name, processor_type
)
print(des_processor)
destination_processor_id = des_processor.name.split("/")[-1]
# configuring dataset for target processor in destination project
r = initialize_dataset(
destination_project_id, destination_processor_id, destination_location
)
# fetching processor schema from source processor
exported_schema = get_dataset_schema(
source_project_id, source_processor_id, source_location
)
exported_schema.name = f"projects/{destination_project_id}/locations/{destination_location}/processors/{destination_processor_id}/dataset/datasetSchema"
# Copying schema from source processor to desination processor
import_schema = upload_dataset_schema(exported_schema)
if migrate_dataset == True: # to migrate dataset from source to destination processor
print("Migrating Dataset from source to destination processor")
# Fetching/listing the samples/JSONs present in source processor dataset
results = list_documents(source_project_id, source_location, source_processor_id)
document_list = results.document_metadata
while len(document_list) != results.total_size:
page_token = results.next_page_token
results = list_documents(
source_project_id,
source_location,
source_processor_id,
page_token=page_token,
)
document_list.extend(results.document_metadata)
print("Exporting Dataset...")
for doc in tqdm(document_list):
doc_id = doc.document_id
split_type = doc.dataset_type
if split_type == 3:
split = "unassigned"
elif split_type == 2:
split = "test"
elif split_type == 1:
split = "train"
else:
split = "unknown"
file_name = doc.display_name
# fetching/downloading data for individual sample/document present in dataset
res = get_document(
source_project_id, source_location, source_processor_id, doc_id
)
output_file_name = (
f"{exported_bucket_path_prefix.strip('/')}/{split}/{file_name}.json"
)
# Converting Document AI Proto object to JSON string
json_data = documentai.Document.to_json(res.document)
# Uploading JSON data to specified Cloud Storage path
store_document_as_json(json_data, exported_bucket_name, output_file_name)
print(f"Importing dataset to {destination_processor_id}")
gcs_path = source_exported_gcs_path.strip("/") + "/"
project = destination_project_id
location = destination_location
processor = destination_processor_id
# importing samples/docuemnts from Cloud Storage path to destination processor
res = import_documents(project, processor, location, gcs_path)
print(f"Waiting for {len(document_list)*1.5} seconds")
time.sleep(len(document_list) * 1.5)
else:
print("\tSkipping Dataset Migration actions like, exporting source dataset to Cloud Storage and importing dataset to destination processor")
# Checking for source processor vesion, if id provided then it will be imported to destination processor
if source_processor_version_to_import != "":
print(f"Importing Processor Version {source_processor_version_to_import}")
source_version = f"projects/{source_project_id}/locations/{source_location}/processors/{source_processor_id}/processorVersions/{source_processor_version_to_import}"
destination_version = f"projects/{destination_project_id}/locations/{destination_location}/processors/{destination_processor_id}"
# source_version = f"projects/{source_project_id}/locations/us/processors/a82fc086440d7ea1/processorVersions/f1eeed93aad5e317" # Data for testing
# Importing processor version from source processor to destanation processor
operation = import_processor_version(source_version, destination_version)
name = operation.metadata.common_metadata.resource
destination_processor_version_id = name.split("/")[-1]
# deploying newly imported processor version and set it as default version in desination project
deploy_and_set_default_processor_version(
destination_project_id,
destination_location,
destination_processor_id,
destination_processor_version_id,
)
main(destination_processor_id, migrate_dataset)
print("Process Completed!!!")
Passaggio 6: controlla i dettagli dell'output
Vai al progetto di destinazione e verifica la creazione del processore, la disponibilità del set di dati e la nuova versione del processore come versione predefinita.