Introducción a un contenedor local de aprendizaje profundo
Organiza tus páginas con colecciones
Guarda y categoriza el contenido según tus preferencias.
En esta página, se describe cómo crear y configurar un contenedor local de aprendizaje profundo.
También, en esta guía, se espera que estés familiarizado con Docker.
Antes de comenzar
Completa los siguientes pasos para configurar una cuenta de Google Cloud , habilitar las APIs necesarias y, también, instalar y activar el software requerido.
En la Google Cloud consola, ve a la página Administrar recursos y selecciona un proyecto o crea uno nuevo.
Si usas un sistema operativo basado en Linux, como Ubuntu o Debian, agrega tu nombre de usuario al grupo docker para que puedas ejecutar Docker sin usar sudo:
sudousermod-a-Gdocker${USER}
Es posible que debas reiniciar tu sistema después de agregarte al grupo docker.
Abre Docker. Para garantizar que Docker esté en funcionamiento, ejecuta el siguiente comando de Docker, que muestra la hora y la fecha actuales:
docker run busybox date
Usa gcloud como auxiliar de credenciales para Docker:
gcloud auth configure-docker
Opcional: Si deseas ejecutar el contenedor con GPU de forma local, instala nvidia-docker.
Crea tu contenedor
Sigue estos pasos para crear el contenedor.
Para ver una lista de contenedores disponibles, sigue estos pasos:
gcloud container images list \
--repository="gcr.io/deeplearning-platform-release"
Se recomienda ir a Elige un contenedor para ayudarte a seleccionar el contenedor que deseas.
Si no necesitas usar un contenedor habilitado para GPU, ingresa el siguiente ejemplo de código. Reemplaza tf-cpu.1-13 con el nombre del contenedor que deseas usar.
docker run -d -p 8080:8080 -v /path/to/local/dir:/home/jupyter \
gcr.io/deeplearning-platform-release/tf-cpu.1-13
Si deseas usar un contenedor compatible con GPU, ingresa el siguiente ejemplo de código. Reemplaza tf-gpu.1-13 con el nombre del contenedor que deseas usar.
docker run --runtime=nvidia -d -p 8080:8080 -v /path/to/local/dir:/home/jupyter \
gcr.io/deeplearning-platform-release/tf-gpu.1-13
Con este comando, se inicia el contenedor en modo desconectado, se activa el directorio local /path/to/local/dir en /home/jupyter en el contenedor y se asigna el puerto 8080 en el contenedor al puerto 8080 de tu máquina local. El contenedor está preconfigurado para iniciar un servidor de JupyterLab, que puedes visitar en http://localhost:8080.
[[["Fácil de comprender","easyToUnderstand","thumb-up"],["Resolvió mi problema","solvedMyProblem","thumb-up"],["Otro","otherUp","thumb-up"]],[["Difícil de entender","hardToUnderstand","thumb-down"],["Información o código de muestra incorrectos","incorrectInformationOrSampleCode","thumb-down"],["Faltan la información o los ejemplos que necesito","missingTheInformationSamplesINeed","thumb-down"],["Problema de traducción","translationIssue","thumb-down"],["Otro","otherDown","thumb-down"]],["Última actualización: 2025-09-04 (UTC)"],[[["\u003cp\u003eThis guide details the process of creating and setting up a local deep learning container, requiring basic Docker knowledge.\u003c/p\u003e\n"],["\u003cp\u003eThe setup involves creating or selecting a Google Cloud project, installing and initializing the gcloud CLI, and installing Docker, with specific instructions for Linux users to avoid using \u003ccode\u003esudo\u003c/code\u003e.\u003c/p\u003e\n"],["\u003cp\u003eUsers can choose from available deep learning containers using a command to list them or visit the "Choosing a container" page, then using a command to either use a cpu container, or a gpu-enabled container.\u003c/p\u003e\n"],["\u003cp\u003eThe container is launched in detached mode, mounting a local directory to the container and mapping a port, which then allows the user to use a preconfigured JupyterLab server.\u003c/p\u003e\n"],["\u003cp\u003eOptionally, for those requiring GPU acceleration, the guide suggests installing \u003ccode\u003envidia-docker\u003c/code\u003e, and using the appropriate container creation command.\u003c/p\u003e\n"]]],[],null,["# Get started with a local deep learning container\n\nThis page describes how to create and set up a local deep learning container.\nThis guide expects you to have basic familiarity\nwith [Docker](https://www.docker.com/).\n\nBefore you begin\n----------------\n\nComplete the following steps to set up a Google Cloud account, enable\nthe required APIs, and install and activate the required software.\n\n1. In the Google Cloud Console, go to the **Manage resources** page\n and select or create a project.\n\n | **Note:** If you don't plan to keep the resources you create in this tutorial, create a new project instead of selecting an existing project. After you finish, you can delete the project, removing all resources associated with the project and tutorial.\n\n [Go to Manage\n resources](https://console.cloud.google.com/cloud-resource-manager)\n2. [Install and initialize the\n gcloud CLI](/sdk/docs).\n\n3. [Install Docker](https://docs.docker.com/install/).\n\n If you're using a Linux-based operating system, such as Ubuntu or Debian,\n add your username to the `docker` group so that you can run Docker\n without using `sudo`: \n\n sudo usermod -a -G docker ${USER}\n\n | **Caution:** The `docker` group is equivalent to the `root` user. See [Docker's documentation](https://docs.docker.com/engine/security/security/#docker-daemon-attack-surface) for details on how this affects the security of your system.\n\n You may need to restart your system after adding yourself to\n the `docker` group.\n4. Open Docker. To ensure that Docker is running, run the following\n Docker command, which returns the current time and date:\n\n docker run busybox date\n\n5. Use `gcloud` as the credential helper for Docker:\n\n gcloud auth configure-docker\n\n6. **Optional** : If you want to run the container using GPU locally,\n install\n [`nvidia-docker`](https://github.com/NVIDIA/nvidia-docker#quickstart).\n\nCreate your container\n---------------------\n\nFollow these steps to create your container.\n\n1. To view a list of containers available:\n\n gcloud container images list \\\n --repository=\"gcr.io/deeplearning-platform-release\"\n\n You may want to go to [Choosing a container](/deep-learning-containers/docs/choosing-container)\n to help you select the container that you want.\n2. If you don't need to use a GPU-enabled container, enter the following code\n example. Replace \u003cvar translate=\"no\"\u003etf-cpu.1-13\u003c/var\u003e with the name of the container\n that you want to use.\n\n docker run -d -p 8080:8080 -v /path/to/local/dir:/home/jupyter \\\n gcr.io/deeplearning-platform-release/\u003cvar translate=\"no\"\u003etf-cpu.1-13\u003c/var\u003e\n\n If you want to use a GPU-enabled container, enter the following code\n example. Replace \u003cvar translate=\"no\"\u003etf-gpu.1-13\u003c/var\u003e with the name of the container\n that you want to use. \n\n docker run --runtime=nvidia -d -p 8080:8080 -v /path/to/local/dir:/home/jupyter \\\n gcr.io/deeplearning-platform-release/\u003cvar translate=\"no\"\u003etf-gpu.1-13\u003c/var\u003e\n\nThis command starts up the container in detached mode, mounts the local\ndirectory `/path/to/local/dir` to `/home/jupyter` in the container, and maps\nport 8080 on the container to port 8080 on your local machine. The\ncontainer is preconfigured to start a JupyterLab server, which you can\nvisit at `http://localhost:8080`.\n\nWhat's next\n-----------\n\n- Learn more about how to work with containers in the [Docker\n documentation](https://docs.docker.com)."]]