Menulis ke BigQuery
Tetap teratur dengan koleksi
Simpan dan kategorikan konten berdasarkan preferensi Anda.
Menulis dari Dataflow ke tabel BigQuery yang sudah ada
Mempelajari lebih lanjut
Untuk dokumentasi mendetail yang menyertakan contoh kode ini, lihat artikel berikut:
Contoh kode
Kecuali dinyatakan lain, konten di halaman ini dilisensikan berdasarkan Lisensi Creative Commons Attribution 4.0, sedangkan contoh kode dilisensikan berdasarkan Lisensi Apache 2.0. Untuk mengetahui informasi selengkapnya, lihat Kebijakan Situs Google Developers. Java adalah merek dagang terdaftar dari Oracle dan/atau afiliasinya.
[[["Mudah dipahami","easyToUnderstand","thumb-up"],["Memecahkan masalah saya","solvedMyProblem","thumb-up"],["Lainnya","otherUp","thumb-up"]],[["Sulit dipahami","hardToUnderstand","thumb-down"],["Informasi atau kode contoh salah","incorrectInformationOrSampleCode","thumb-down"],["Informasi/contoh yang saya butuhkan tidak ada","missingTheInformationSamplesINeed","thumb-down"],["Masalah terjemahan","translationIssue","thumb-down"],["Lainnya","otherDown","thumb-down"]],[],[[["\u003cp\u003eThis content demonstrates how to write data from Dataflow to an existing BigQuery table using Java.\u003c/p\u003e\n"],["\u003cp\u003eThe code sample utilizes the \u003ccode\u003eBigQueryIO.write()\u003c/code\u003e transform to send data to BigQuery, including specifying the table destination, data format, and write dispositions.\u003c/p\u003e\n"],["\u003cp\u003eThe process involves creating a Dataflow pipeline, generating an in-memory collection of custom data objects, and applying a transformation to convert it into the needed format.\u003c/p\u003e\n"],["\u003cp\u003eAuthentication with Dataflow is achieved through the setup of Application Default Credentials (ADC).\u003c/p\u003e\n"],["\u003cp\u003ePipeline options such as project ID, dataset name, and table name are configured for dynamic table targeting.\u003c/p\u003e\n"]]],[],null,["# Write to BigQuery\n\nWrite from Dataflow to an existing BigQuery table\n\nExplore further\n---------------\n\n\nFor detailed documentation that includes this code sample, see the following:\n\n- [Write from Dataflow to BigQuery](/dataflow/docs/guides/write-to-bigquery)\n\nCode sample\n-----------\n\n### Java\n\n\nTo authenticate to Dataflow, set up Application Default Credentials.\nFor more information, see\n\n[Set up authentication for a local development environment](/docs/authentication/set-up-adc-local-dev-environment).\n\n import com.google.api.services.bigquery.model.TableRow;\n import java.util.Arrays;\n import java.util.List;\n import org.apache.beam.sdk.Pipeline;\n import org.apache.beam.sdk.coders.DefaultCoder;\n import org.apache.beam.sdk.extensions.avro.coders.AvroCoder;\n import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO;\n import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO.Write;\n import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO.Write.CreateDisposition;\n import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO.Write.WriteDisposition;\n import org.apache.beam.sdk.options.PipelineOptionsFactory;\n import org.apache.beam.sdk.transforms.Create;\n\n public class BigQueryWrite {\n // A custom datatype for the source data.\n @DefaultCoder(AvroCoder.class)\n public static class MyData {\n public String name;\n public Long age;\n\n public MyData() {}\n\n public MyData(String name, Long age) {\n this.name = name;\n this.age = age;\n }\n }\n\n public static void main(String[] args) {\n // Example source data.\n final List\u003cMyData\u003e data = Arrays.asList(\n new MyData(\"Alice\", 40L),\n new MyData(\"Bob\", 30L),\n new MyData(\"Charlie\", 20L)\n );\n\n // Parse the pipeline options passed into the application. Example:\n // --projectId=$PROJECT_ID --datasetName=$DATASET_NAME --tableName=$TABLE_NAME\n // For more information, see https://beam.apache.org/documentation/programming-guide/#configuring-pipeline-options\n PipelineOptionsFactory.register(ExamplePipelineOptions.class);\n ExamplePipelineOptions options = PipelineOptionsFactory.fromArgs(args)\n .withValidation()\n .as(ExamplePipelineOptions.class);\n\n // Create a pipeline and apply transforms.\n Pipeline pipeline = Pipeline.create(options);\n pipeline\n // Create an in-memory PCollection of MyData objects.\n .apply(Create.of(data))\n // Write the data to an exiting BigQuery table.\n .apply(BigQueryIO.\u003cMyData\u003ewrite()\n .to(String.format(\"%s:%s.%s\",\n options.getProjectId(),\n options.getDatasetName(),\n options.getTableName()))\n .withFormatFunction(\n (MyData x) -\u003e new TableRow().set(\"user_name\", x.name).set(\"age\", x.age))\n .withCreateDisposition(CreateDisposition.CREATE_NEVER)\n .withWriteDisposition(WriteDisposition.WRITE_APPEND)\n .withMethod(Write.Method.STORAGE_WRITE_API));\n pipeline.run().waitUntilFinish();\n }\n }\n\nWhat's next\n-----------\n\n\nTo search and filter code samples for other Google Cloud products, see the\n[Google Cloud sample browser](/docs/samples?product=dataflow)."]]