Modello da Pub/Sub a MongoDB

Il modello da Pub/Sub a MongoDB è una pipeline di flusso che legge i messaggi con codifica JSON da una sottoscrizione Pub/Sub e li scrive in MongoDB come documenti. Se necessario, questa pipeline supporta trasformazioni aggiuntive che possono essere incluse utilizzando una funzione definita dall'utente (UDF) JavaScript.

Se si verificano errori durante l'elaborazione dei record, il modello li scrive in un tabella BigQuery, insieme al messaggio di input. Ad esempio, errori potrebbero verificarsi a causa di una mancata corrispondenza dello schema, di un JSON in un formato non valido o durante l'esecuzione e piccole trasformazioni. Specifica il nome della tabella nel campo deadletterTable . Se la tabella non esiste, la pipeline la crea automaticamente.

Requisiti della pipeline

  • La sottoscrizione Pub/Sub deve esistere e i messaggi devono essere codificati in un formato JSON valido.
  • Il cluster MongoDB deve esistere e deve essere accessibile dalle macchine worker Dataflow.

Parametri del modello

Parametri obbligatori

  • inputSubscription : nome della sottoscrizione Pub/Sub. ad esempio projects/your-project-id/subscriptions/your-subscription-name).
  • mongoDBUri : elenco separato da virgole di server MongoDB. ad esempio host1:porta,host2:porta,host3:porta.
  • database : database in MongoDB per archiviare la raccolta. Esempio: my-db.
  • collection : nome della raccolta nel database MongoDB. (Esempio: la-mia-raccolta).
  • deadletterTable : la tabella BigQuery in cui sono archiviati i messaggi causati da errori, ad esempio uno schema non corrispondente, un JSON in formato non corretto e così via. ad esempio id-progetto:set-di-dati.nome-tabella.

Parametri facoltativi

  • batchSize : dimensione del batch utilizzata per l'inserimento batch di documenti in MongoDB. Il valore predefinito è 1000.
  • batchSizeBytes : dimensione del batch in byte. Il valore predefinito è 5242880.
  • maxConnectionIdleTime : tempo massimo di inattività consentito in secondi prima che si verifichi il timeout della connessione. Il valore predefinito è 60.000.
  • sslEnabled : valore booleano che indica se la connessione a MongoDB è abilitata per SSL. Il valore predefinito è: true.
  • ignoreSSLCertificate : valore booleano che indica se ignorare il certificato SSL. Il valore predefinito è: true.
  • withOrdered : valore booleano che consente gli inserimenti collettivi ordinati in MongoDB. Il valore predefinito è: true.
  • withSSLInvalidHostNameAllowed : valore booleano che indica se per la connessione SSL è consentito un nome host non valido. Il valore predefinito è: true.
  • javascriptTextTransformGcsPath : l'URI Cloud Storage del file .js che definisce la funzione definita dall'utente (UDF) JavaScript da utilizzare. Esempio: gs://my-bucket/my-udfs/my_file.js.
  • javascriptTextTransformFunctionName : il nome della funzione definita dall'utente (UDF) JavaScript da utilizzare. Ad esempio, se il codice della funzione JavaScript è myTransform(inJson) { /*...do stuff...*/ }, il nome della funzione è myTransform. Per esempi di funzioni JavaScript definite dall'utente, consulta gli esempi di funzioni definite dall'utente (https://github.com/GoogleCloudPlatform/DataflowTemplates#udf-examples).
  • javascriptTextTransformReloadIntervalMinutes : specifica la frequenza di ricarica della funzione definita dall'utente, in minuti. Se il valore è maggiore di 0, Dataflow controlla periodicamente il file delle funzioni definite dall'utente in Cloud Storage e ricarica la funzione definita dall'utente se il file viene modificato. Questo parametro consente di aggiornare la funzione definita dall'utente mentre la pipeline è in esecuzione, senza dover riavviare il job. Se il valore è 0, il ricaricamento della funzione definita dall'utente viene disabilitato. Il valore predefinito è 0.

Funzione definita dall'utente

Facoltativamente, puoi estendere questo modello scrivendo una funzione definita dall'utente (UDF). Il modello chiama la funzione definita dall'utente per ogni elemento di input. I payload degli elementi serializzate come stringhe JSON. Per ulteriori informazioni, vedi Crea funzioni definite dall'utente per i modelli Dataflow.

Specifica della funzione

La funzione definita dall'utente ha la seguente specifica:

  • Input: una singola riga di un file CSV di input.
  • Output: un documento JSON con stringhe da inserire in MongoDB.

Esegui il modello

Console

  1. Vai alla pagina Crea job da modello di Dataflow.
  2. Vai a Crea job da modello
  3. Nel campo Nome job, inserisci un nome univoco per il job.
  4. (Facoltativo) Per Endpoint a livello di regione, seleziona un valore dal menu a discesa. Il valore predefinito è us-central1.

    Per un elenco di regioni in cui è possibile eseguire un job Dataflow, consulta Località di Dataflow.

  5. Dal menu a discesa Modello Dataflow, seleziona the Pub/Sub to MongoDB template.
  6. Inserisci i valori parametro negli appositi campi.
  7. Fai clic su Esegui job.

gcloud

Nella shell o nel terminale, esegui il modello:

gcloud dataflow flex-template run JOB_NAME \
    --project=PROJECT_ID \
    --region=REGION_NAME \
    --template-file-gcs-location=gs://dataflow-templates-REGION_NAME/VERSION/flex/Cloud_PubSub_to_MongoDB \
    --parameters \
inputSubscription=INPUT_SUBSCRIPTION,\
mongoDBUri=MONGODB_URI,\
database=DATABASE,
collection=COLLECTION,
deadletterTable=UNPROCESSED_TABLE
  

Sostituisci quanto segue:

  • PROJECT_ID: L'ID progetto Google Cloud in cui vuoi eseguire il job Dataflow
  • REGION_NAME: la regione in cui vuoi di eseguire il deployment del job Dataflow, ad esempio us-central1
  • JOB_NAME: un nome job univoco di tua scelta
  • VERSION: la versione del modello che vuoi utilizzare

    Puoi utilizzare i seguenti valori:

    di Gemini Advanced.
  • INPUT_SUBSCRIPTION: la sottoscrizione Pub/Sub (ad esempio, projects/my-project-id/subscriptions/my-subscription-id)
  • MONGODB_URI: gli indirizzi dei server MongoDB (ad esempio, 192.285.234.12:27017,192.287.123.11:27017)
  • DATABASE: il nome del database MongoDB (ad esempio, users)
  • COLLECTION: il nome della raccolta MongoDB (ad esempio, profiles)
  • UNPROCESSED_TABLE: il nome della tabella BigQuery (ad esempio your-project:your-dataset.your-table-name)

API

Per eseguire il modello utilizzando l'API REST, invia una richiesta POST HTTP. Per ulteriori informazioni sul API e i relativi ambiti di autorizzazione, consulta projects.templates.launch

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/flexTemplates:launch
{
   "launch_parameter": {
      "jobName": "JOB_NAME",
      "parameters": {
          "inputSubscription": "INPUT_SUBSCRIPTION",
          "mongoDBUri": "MONGODB_URI",
          "database": "DATABASE",
          "collection": "COLLECTION",
          "deadletterTable": "UNPROCESSED_TABLE"
      },
      "containerSpecGcsPath": "gs://dataflow-templates-LOCATION/VERSION/flex/Cloud_PubSub_to_MongoDB",
   }
}
  

Sostituisci quanto segue:

  • PROJECT_ID: L'ID progetto Google Cloud in cui vuoi eseguire il job Dataflow
  • LOCATION: la regione in cui vuoi di eseguire il deployment del job Dataflow, ad esempio us-central1
  • JOB_NAME: un nome job univoco di tua scelta
  • VERSION: la versione del modello che vuoi utilizzare

    Puoi utilizzare i seguenti valori:

    di Gemini Advanced.
  • INPUT_SUBSCRIPTION: la sottoscrizione Pub/Sub (ad esempio, projects/my-project-id/subscriptions/my-subscription-id)
  • MONGODB_URI: gli indirizzi dei server MongoDB (ad esempio, 192.285.234.12:27017,192.287.123.11:27017)
  • DATABASE: il nome del database MongoDB (ad esempio, users)
  • COLLECTION: il nome della raccolta MongoDB (ad esempio, profiles)
  • UNPROCESSED_TABLE: il nome della tabella BigQuery (ad esempio your-project:your-dataset.your-table-name)

Passaggi successivi