Modelo do Java Database Connectivity (JDBC) para BigQuery

O modelo JDBC para BigQuery é um pipeline em lote que copia dados de uma tabela de banco de dados relacional para uma tabela existente do BigQuery. Esse pipeline usa o JDBC para se conectar ao banco de dados relacional. Use esse modelo para copiar dados de qualquer banco de dados relacional com drivers JDBC disponíveis para o BigQuery.

Para ter uma camada extra de proteção, é possível transmitir uma chave do Cloud KMS com um nome de usuário, senha e parâmetros de string de conexão codificados em Base64 e criptografados com a chave do Cloud KMS. Para mais detalhes sobre como criptografar seu nome de usuário, senha e parâmetros de string de conexão, consulte o Endpoint de criptografia da API Cloud KMS.

Requisitos de pipeline

  • É necessário que os drivers do JDBC para o banco de dados relacional estejam disponíveis.
  • A tabela do BigQuery precisa existir antes da execução do pipeline.
  • A tabela do BigQuery precisa ter um esquema compatível.
  • O banco de dados relacional precisa estar acessível na sub-rede em que o Dataflow é executado.

Parâmetros do modelo

Parâmetros obrigatórios

  • driverJars: a lista separada por vírgulas de arquivos JAR do driver. Por exemplo, gs://your-bucket/driver_jar1.jar,gs://your-bucket/driver_jar2.jar.
  • driverClassName: o nome da classe do driver do JDBC. Por exemplo, com.mysql.jdbc.Driver.
  • connectionURL: a string do URL de conexão do JDBC. Por exemplo, jdbc:mysql://some-host:3306/sampledb. É possível transmitir esse valor como uma string criptografada com uma chave do Cloud KMS e, em seguida, codificada em Base64. Remova os caracteres de espaço em branco da string codificada em Base64. Observe a diferença entre uma string de conexão de banco de dados Oracle não RAC (jdbc:oracle:thin:@some-host:<port>:<sid>) e uma string de conexão de banco de dados Oracle RAC (jdbc:oracle:thin:@//some-host[:<port>]/<service_name>). Por exemplo, jdbc:mysql://some-host:3306/sampledb.
  • outputTable: o local da tabela de saída do BigQuery. Por exemplo, <PROJECT_ID>:<DATASET_NAME>.<TABLE_NAME>.
  • bigQueryLoadingTemporaryDirectory: o diretório temporário do processo de carregamento do BigQuery. Por exemplo, gs://your-bucket/your-files/temp_dir.

Parâmetros opcionais

  • connectionProperties: a string de propriedades a ser usada para a conexão JDBC. O formato da string precisa ser [propertyName=property;]*.Para mais informações, consulte as propriedades de configuração (https://dev.mysql.com/doc/connector-j/en/connector-j-reference-configuration-properties.html) na documentação do MySQL. Por exemplo, unicode=true;characterEncoding=UTF-8.
  • username: o nome de usuário a ser usado para a conexão JDBC. Pode ser transmitida como uma string criptografada com uma chave do Cloud KMS ou como um secret do Secret Manager no formato projects/{project}/secrets/{secret}/versions/{secret_version}.
  • password: a senha a ser usada para a conexão JDBC. Pode ser transmitida como uma string criptografada com uma chave do Cloud KMS ou como um secret do Secret Manager no formato projects/{project}/secrets/{secret}/versions/{secret_version}.
  • query: a consulta a ser executada na origem para extrair os dados. Alguns tipos JDBC e BigQuery, embora compartilhem o mesmo nome, têm algumas diferenças. Alguns mapeamentos de tipo importantes de SQL -> BigQuery a serem lembrados são DATETIME --> TIMESTAMP. Talvez seja necessário transmitir o tipo se os esquemas não corresponderem. Por exemplo, select * from sampledb.sample_table.
  • KMSEncryptionKey: a chave de criptografia do Cloud KMS a ser usada para descriptografar o nome de usuário, a senha e a string de conexão. Se você transmitir uma chave do Cloud KMS, também precisará criptografar o nome de usuário, a senha e a string de conexão. Por exemplo, projects/your-project/locations/global/keyRings/your-keyring/cryptoKeys/your-key.
  • useColumnAlias: se definido como true, o pipeline usa o alias de coluna (AS) em vez do nome da coluna para mapear as linhas para o BigQuery. O padrão é false.
  • isTruncate: se definido como true, o pipeline será truncado antes de carregar dados no BigQuery. O padrão é false, o que faz com que o pipeline adicione dados ao final.
  • partitionColumn: se esse parâmetro for fornecido com o nome do table definido como um parâmetro opcional, o JdbcIO lerá a tabela em paralelo executando várias instâncias da consulta na mesma tabela (subconsulta) usando intervalos. No momento, ele só é compatível com colunas de partição Long.
  • table: a tabela a ser lida ao usar partições. Esse parâmetro também aceita uma subconsulta entre parênteses. Por exemplo, (select id, name from Person) as subq.
  • numPartitions: o número de partições. Com os limites inferior e superior, esse valor forma saltos de partição para expressões de cláusula WHERE geradas que são usadas para dividir a coluna de partição de maneira uniforme. Quando a entrada for menor que 1, o número será definido como 1.
  • lowerBound: o limite inferior a ser usado no esquema de partição. Se não for fornecido, esse valor será inferido automaticamente pelo Apache Beam para os tipos compatíveis.
  • upperBound: o limite superior a ser usado no esquema de partição. Se não for fornecido, esse valor será inferido automaticamente pelo Apache Beam para os tipos compatíveis.
  • fetchSize: o número de linhas a serem buscadas no banco de dados de cada vez. Não é usado para leituras particionadas. O padrão é 50000.
  • createDisposition: o CreateDisposition do BigQuery a ser usado. Por exemplo, CREATE_IF_NEEDED ou CREATE_NEVER. O padrão é: CREATE_NEVER.
  • bigQuerySchemaPath: o caminho do Cloud Storage para o esquema JSON do BigQuery. Se createDisposition estiver definido como CREATE_IF_NEEDED, esse parâmetro precisará ser especificado. Por exemplo, gs://your-bucket/your-schema.json.
  • outputDeadletterTable: a tabela do BigQuery a ser usada para mensagens que não alcançaram a tabela de saída, formatada como "PROJECT_ID:DATASET_NAME.TABLE_NAME". Se a tabela não existir, ela será criada quando o pipeline for executado. Se esse parâmetro não for especificado, o pipeline vai falhar em erros de gravação.Esse parâmetro só pode ser especificado se useStorageWriteApi ou useStorageWriteApiAtLeastOnce for definido como verdadeiro.
  • disabledAlgorithms: algoritmos separados por vírgula a serem desativados. Se esse valor for definido como none, nenhum algoritmo será desativado. Use esse parâmetro com cuidado, porque os algoritmos desativados por padrão podem ter vulnerabilidades ou problemas de desempenho. Por exemplo, SSLv3, RC4.
  • extraFilesToStage: caminhos do Cloud Storage separados por vírgulas ou secrets do Secret Manager para que os arquivos sejam organizados no worker. Esses arquivos são salvos no diretório /extra_files em cada worker. Por exemplo, gs://<BUCKET_NAME>/file.txt,projects/<PROJECT_ID>/secrets/<SECRET_ID>/versions/<VERSION_ID>.
  • useStorageWriteApi: se true, o pipeline usa a API BigQuery Storage Write (https://cloud.google.com/bigquery/docs/write-api). O valor padrão é false. Para mais informações, consulte Como usar a API Storage Write (https://beam.apache.org/documentation/io/built-in/google-bigquery/#storage-write-api).
  • useStorageWriteApiAtLeastOnce: ao usar a API Storage Write, especifica a semântica de gravação. Para usar a semântica pelo menos uma vez (https://beam.apache.org/documentation/io/built-in/google-bigquery/#at-least-once-semantics), defina este parâmetro como true. Para usar semântica exatamente uma vez, defina o parâmetro como false. Esse parâmetro se aplica apenas quando useStorageWriteApi é true. O valor padrão é false.

Executar o modelo

Console

  1. Acesse a página Criar job usando um modelo do Dataflow.
  2. Acesse Criar job usando um modelo
  3. No campo Nome do job, insira um nome exclusivo.
  4. Opcional: em Endpoint regional, selecione um valor no menu suspenso. A região padrão é us-central1.

    Para ver uma lista de regiões em que é possível executar um job do Dataflow, consulte Locais do Dataflow.

  5. No menu suspenso Modelo do Dataflow, selecione the JDBC to BigQuery with BigQuery Storage API support template.
  6. Nos campos de parâmetro fornecidos, insira os valores de parâmetro.
  7. Cliquem em Executar job.

gcloud

No shell ou no terminal, execute o modelo:

gcloud dataflow flex-template run JOB_NAME \
    --template-file-gcs-location=gs://dataflow-templates-REGION_NAME/VERSION/flex/Jdbc_to_BigQuery_Flex \
    --project=PROJECT_ID \
    --region=REGION_NAME \
    --parameters \
       driverJars=DRIVER_JARS,\
       driverClassName=DRIVER_CLASS_NAME,\
       connectionURL=CONNECTION_URL,\
       outputTable=OUTPUT_TABLE,\
       bigQueryLoadingTemporaryDirectory=BIG_QUERY_LOADING_TEMPORARY_DIRECTORY,\

Substitua:

  • JOB_NAME: um nome de job de sua escolha
  • VERSION: a versão do modelo que você quer usar

    Use estes valores:

  • REGION_NAME: a região onde você quer implantar o job do Dataflow, por exemplo, us-central1
  • DRIVER_JARS: os caminhos do Cloud Storage separados por vírgulas dos drivers do JDBC
  • DRIVER_CLASS_NAME: o nome da classe do driver do JDBC
  • CONNECTION_URL: a string do URL de conexão do JDBC
  • OUTPUT_TABLE: a tabela de saída do BigQuery
  • BIG_QUERY_LOADING_TEMPORARY_DIRECTORY: o diretório temporário para o processo de carregamento do BigQuery

API

Para executar o modelo usando a API REST, envie uma solicitação HTTP POST. Para mais informações sobre a API e os respectivos escopos de autorização, consulte projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/flexTemplates:launch
{
   "launchParameter": {
     "jobName": "JOB_NAME",
     "parameters": {
       "driverJars": "DRIVER_JARS",
       "driverClassName": "DRIVER_CLASS_NAME",
       "connectionURL": "CONNECTION_URL",
       "outputTable": "OUTPUT_TABLE",
       "bigQueryLoadingTemporaryDirectory": "BIG_QUERY_LOADING_TEMPORARY_DIRECTORY",
     },
     "containerSpecGcsPath": "gs://dataflow-templates-LOCATION/VERSION/flex/Jdbc_to_BigQuery_Flex",
     "environment": { "maxWorkers": "10" }
  }
}

Substitua:

  • PROJECT_ID: o ID do projeto do Google Cloud em que você quer executar o job do Dataflow
  • JOB_NAME: um nome de job de sua escolha
  • VERSION: a versão do modelo que você quer usar

    Use estes valores:

  • LOCATION: a região onde você quer implantar o job do Dataflow, por exemplo, us-central1
  • DRIVER_JARS: os caminhos do Cloud Storage separados por vírgulas dos drivers do JDBC
  • DRIVER_CLASS_NAME: o nome da classe do driver do JDBC
  • CONNECTION_URL: a string do URL de conexão do JDBC
  • OUTPUT_TABLE: a tabela de saída do BigQuery
  • BIG_QUERY_LOADING_TEMPORARY_DIRECTORY: o diretório temporário para o processo de carregamento do BigQuery

A seguir