Data Masking/Tokenization from Cloud Storage to BigQuery テンプレートでは、Sensitive Data Protection を使用して、次の処理を行うストリーミング パイプラインを作成します。
- Cloud Storage バケットから CSV ファイルを読み取る。
- 匿名化のために Cloud Data Loss Prevention API(Sensitive Data Protection の一部)を呼び出す。
- 匿名化されたデータを指定した BigQuery テーブルに書き込む。
このテンプレートでは、Sensitive Data Protection の検査テンプレートと Sensitive Data Protection の匿名化テンプレートの両方を使用できます。そのため、このテンプレートは次の両方のタスクをサポートします。
- 機密情報の可能性がある情報を検査し、データを匿名化する。
- 列の匿名化が指定されていて、検査が不要な構造化データを匿名化する。
このテンプレートでは、匿名化テンプレートの場所にリージョンパスは使用できません。グローバルパスのみがサポートされています。
パイプラインの要件
- トークン化する入力データが存在している必要があります。
- Sensitive Data Protection テンプレート(DeidentifyTemplate や InspectTemplate)が存在している必要があります。詳細については、Sensitive Data Protection テンプレートをご覧ください。
- BigQuery データセットが存在している必要があります。
テンプレートのパラメータ
必須パラメータ
- inputFilePattern: 入力データレコードを読み込む CSV ファイル。ワイルドカードも使用できます(例: gs://mybucket/my_csv_filename.csv や gs://mybucket/file-*.csv など)。
- deidentifyTemplateName: API リクエストに使用する Sensitive Data Protection の匿名化テンプレート。パターン projects/<PROJECT_ID>/deidentifyTemplates/<TEMPLATE_ID> で指定します(例: projects/your-project-id/locations/global/deidentifyTemplates/generated_template_id)。
- datasetName: トークン化された結果を送信する際に使用する BigQuery データセット。データセットは、実行前に存在している必要があります。
- dlpProjectId: DLP API リソースを所有する Google Cloud プロジェクトの ID。このプロジェクトは、Sensitive Data Protection テンプレートを所有するプロジェクトと同じプロジェクトにすることも、別のプロジェクトにすることもできます。
オプション パラメータ
- inspectTemplateName: API リクエストに使用する Sensitive Data Protection 検査テンプレート。projects/<PROJECT_ID>/identifyTemplates/<TEMPLATE_ID> のパターンで指定します(例: projects/your-project-id/locations/global/inspectTemplates/generated_template_id)。
- batchSize: 検査とトークン化解除を行うためにデータを送信する際に使用するチャンクまたはバッチサイズ。CSV ファイルの場合、
batchSize
の値はバッチ内の行数です。レコードのサイズとファイルのサイズに基づいてバッチサイズを決定します。DLP API では、ペイロードのサイズが API 呼び出しごとに 524 KB に制限されます。
テンプレートを実行する
コンソール
- Dataflow の [テンプレートからジョブを作成] ページに移動します。 [テンプレートからジョブを作成] に移動
- [ジョブ名] フィールドに、固有のジョブ名を入力します。
- (省略可)[リージョン エンドポイント] で、プルダウン メニューから値を選択します。デフォルトのリージョンは
us-central1
です。Dataflow ジョブを実行できるリージョンのリストについては、Dataflow のロケーションをご覧ください。
- [Dataflow テンプレート] プルダウン メニューから、[ the Data Masking/Tokenization from Cloud Storage to BigQuery (using Cloud DLP) template] を選択します。
- 表示されたパラメータ フィールドに、パラメータ値を入力します。
- [ジョブを実行] をクリックします。
gcloud
シェルまたはターミナルで、テンプレートを実行します。
gcloud dataflow jobs run JOB_NAME \ --gcs-location gs://dataflow-templates-REGION_NAME/VERSION/Stream_DLP_GCS_Text_to_BigQuery \ --region REGION_NAME \ --staging-location STAGING_LOCATION \ --parameters \ inputFilePattern=INPUT_DATA,\ datasetName=DATASET_NAME,\ batchSize=BATCH_SIZE_VALUE,\ dlpProjectId=DLP_API_PROJECT_ID,\ deidentifyTemplateName=projects/TEMPLATE_PROJECT_ID/deidentifyTemplates/DEIDENTIFY_TEMPLATE,\ inspectTemplateName=projects/TEMPLATE_PROJECT_ID/identifyTemplates/INSPECT_TEMPLATE_NUMBER
次のように置き換えます。
DLP_API_PROJECT_ID
: DLP API プロジェクト IDJOB_NAME
: 一意の任意のジョブ名REGION_NAME
: Dataflow ジョブをデプロイするリージョン(例:us-central1
)VERSION
: 使用するテンプレートのバージョン使用できる値は次のとおりです。
latest
: 最新バージョンのテンプレートを使用します。このテンプレートは、バケット内で日付のない親フォルダ(gs://dataflow-templates-REGION_NAME/latest/)にあります。- バージョン名(例:
2023-09-12-00_RC00
)。特定のバージョンのテンプレートを使用します。このテンプレートは、バケット内で対応する日付の親フォルダ(gs://dataflow-templates-REGION_NAME/)にあります。
STAGING_LOCATION
: ローカル ファイルをステージングする場所(例:gs://your-bucket/staging
)INPUT_DATA
: 入力ファイルのパスDEIDENTIFY_TEMPLATE
: Sensitive Data Protection 匿名化テンプレート番号DATASET_NAME
: BigQuery データセット名INSPECT_TEMPLATE_NUMBER
: Sensitive Data Protection 検査テンプレート番号BATCH_SIZE_VALUE
: バッチサイズ(CSV ファイルの場合は API ごとの行数)
REST
REST API を使用してテンプレートを実行するには、HTTP POST リクエストを送信します。API とその認可スコープの詳細については、projects.templates.launch
をご覧ください。
POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/templates:launch?gcsPath=gs://dataflow-templates-LOCATION/VERSION/Stream_DLP_GCS_Text_to_BigQuery { "jobName": "JOB_NAME", "environment": { "ipConfiguration": "WORKER_IP_UNSPECIFIED", "additionalExperiments": [] }, "parameters": { "inputFilePattern":INPUT_DATA, "datasetName": "DATASET_NAME", "batchSize": "BATCH_SIZE_VALUE", "dlpProjectId": "DLP_API_PROJECT_ID", "deidentifyTemplateName": "projects/TEMPLATE_PROJECT_ID/deidentifyTemplates/DEIDENTIFY_TEMPLATE", "inspectTemplateName": "projects/TEMPLATE_PROJECT_ID/identifyTemplates/INSPECT_TEMPLATE_NUMBER" } }
次のように置き換えます。
PROJECT_ID
: Dataflow ジョブを実行する Google Cloud プロジェクトの IDDLP_API_PROJECT_ID
: DLP API プロジェクト IDJOB_NAME
: 一意の任意のジョブ名LOCATION
: Dataflow ジョブをデプロイするリージョン(例:us-central1
)VERSION
: 使用するテンプレートのバージョン使用できる値は次のとおりです。
latest
: 最新バージョンのテンプレートを使用します。このテンプレートは、バケット内で日付のない親フォルダ(gs://dataflow-templates-REGION_NAME/latest/)にあります。- バージョン名(例:
2023-09-12-00_RC00
)。特定のバージョンのテンプレートを使用します。このテンプレートは、バケット内で対応する日付の親フォルダ(gs://dataflow-templates-REGION_NAME/)にあります。
STAGING_LOCATION
: ローカル ファイルをステージングする場所(例:gs://your-bucket/staging
)INPUT_DATA
: 入力ファイルのパスDEIDENTIFY_TEMPLATE
: Sensitive Data Protection 匿名化テンプレート番号DATASET_NAME
: BigQuery データセット名INSPECT_TEMPLATE_NUMBER
: Sensitive Data Protection 検査テンプレート番号BATCH_SIZE_VALUE
: バッチサイズ(CSV ファイルの場合は API ごとの行数)
テンプレートのソースコード
Java
/*
* Copyright (C) 2018 Google LLC
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/
package com.google.cloud.teleport.templates;
import com.google.api.services.bigquery.model.TableCell;
import com.google.api.services.bigquery.model.TableFieldSchema;
import com.google.api.services.bigquery.model.TableRow;
import com.google.api.services.bigquery.model.TableSchema;
import com.google.cloud.dlp.v2.DlpServiceClient;
import com.google.cloud.teleport.metadata.Template;
import com.google.cloud.teleport.metadata.TemplateCategory;
import com.google.cloud.teleport.metadata.TemplateParameter;
import com.google.cloud.teleport.templates.DLPTextToBigQueryStreaming.TokenizePipelineOptions;
import com.google.privacy.dlp.v2.ContentItem;
import com.google.privacy.dlp.v2.DeidentifyContentRequest;
import com.google.privacy.dlp.v2.DeidentifyContentRequest.Builder;
import com.google.privacy.dlp.v2.DeidentifyContentResponse;
import com.google.privacy.dlp.v2.FieldId;
import com.google.privacy.dlp.v2.ProjectName;
import com.google.privacy.dlp.v2.Table;
import com.google.privacy.dlp.v2.Value;
import java.io.BufferedReader;
import java.io.IOException;
import java.nio.channels.Channels;
import java.nio.channels.ReadableByteChannel;
import java.nio.charset.StandardCharsets;
import java.sql.SQLException;
import java.util.ArrayList;
import java.util.Iterator;
import java.util.List;
import java.util.Map;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.regex.Pattern;
import java.util.stream.Collectors;
import org.apache.beam.runners.dataflow.options.DataflowPipelineOptions;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.PipelineResult;
import org.apache.beam.sdk.coders.KvCoder;
import org.apache.beam.sdk.coders.StringUtf8Coder;
import org.apache.beam.sdk.io.Compression;
import org.apache.beam.sdk.io.FileIO;
import org.apache.beam.sdk.io.FileIO.ReadableFile;
import org.apache.beam.sdk.io.ReadableFileCoder;
import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO;
import org.apache.beam.sdk.io.gcp.bigquery.DynamicDestinations;
import org.apache.beam.sdk.io.gcp.bigquery.InsertRetryPolicy;
import org.apache.beam.sdk.io.gcp.bigquery.TableDestination;
import org.apache.beam.sdk.io.range.OffsetRange;
import org.apache.beam.sdk.metrics.Distribution;
import org.apache.beam.sdk.metrics.Metrics;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.options.Validation.Required;
import org.apache.beam.sdk.options.ValueProvider;
import org.apache.beam.sdk.options.ValueProvider.NestedValueProvider;
import org.apache.beam.sdk.transforms.DoFn;
import org.apache.beam.sdk.transforms.GroupByKey;
import org.apache.beam.sdk.transforms.ParDo;
import org.apache.beam.sdk.transforms.Watch;
import org.apache.beam.sdk.transforms.WithKeys;
import org.apache.beam.sdk.transforms.splittabledofn.OffsetRangeTracker;
import org.apache.beam.sdk.transforms.splittabledofn.RestrictionTracker;
import org.apache.beam.sdk.transforms.windowing.AfterProcessingTime;
import org.apache.beam.sdk.transforms.windowing.FixedWindows;
import org.apache.beam.sdk.transforms.windowing.Repeatedly;
import org.apache.beam.sdk.transforms.windowing.Window;
import org.apache.beam.sdk.values.KV;
import org.apache.beam.sdk.values.PCollection;
import org.apache.beam.sdk.values.PCollectionView;
import org.apache.beam.sdk.values.ValueInSingleWindow;
import org.apache.commons.csv.CSVFormat;
import org.apache.commons.csv.CSVRecord;
import org.joda.time.Duration;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
/**
* The {@link DLPTextToBigQueryStreaming} is a streaming pipeline that reads CSV files from a
* storage location (e.g. Google Cloud Storage), uses Cloud DLP API to inspect, classify, and mask
* sensitive information (e.g. PII Data like passport or SIN number) and at the end stores
* obfuscated data in BigQuery (Dynamic Table Creation) to be used for various purposes. e.g. data
* analytics, ML model. Cloud DLP inspection and masking can be configured by the user and can make
* use of over 90 built in detectors and masking techniques like tokenization, secure hashing, date
* shifting, partial masking, and more.
*
* <p><b>Pipeline Requirements</b>
*
* <ul>
* <li>DLP Templates exist (e.g. deidentifyTemplate, InspectTemplate)
* <li>The BigQuery Dataset exists
* </ul>
*
* <p>Check out <a
* href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v1/README_Stream_DLP_GCS_Text_to_BigQuery.md">README</a>
* for instructions on how to use or modify this template.
*/
@Template(
name = "Stream_DLP_GCS_Text_to_BigQuery",
category = TemplateCategory.STREAMING,
displayName = "Data Masking/Tokenization from Cloud Storage to BigQuery (using Cloud DLP)",
description = {
"The Data Masking/Tokenization from Cloud Storage to BigQuery template uses <a href=\"https://cloud.google.com/dlp/docs\">Sensitive Data Protection</a> and creates a streaming pipeline that does the following steps:\n"
+ "1. Reads CSV files from a Cloud Storage bucket.\n"
+ "2. Calls the Cloud Data Loss Prevention API (part of Sensitive Data Protection) for de-identification.\n"
+ "3. Writes the de-identified data into the specified BigQuery table.",
"The template supports using both a Sensitive Data Protection <a href=\"https://cloud.google.com/dlp/docs/creating-templates\">inspection template</a> and a Sensitive Data Protection <a href=\"https://cloud.google.com/dlp/docs/creating-templates-deid\">de-identification template</a>. As a result, the template supports both of the following tasks:\n"
+ "- Inspect for potentially sensitive information and de-identify the data.\n"
+ "- De-identify structured data where columns are specified to be de-identified and no inspection is needed.",
"Note: This template does not support a regional path for de-identification template location. Only a global path is supported."
},
optionsClass = TokenizePipelineOptions.class,
documentation =
"https://cloud.google.com/dataflow/docs/guides/templates/provided/dlp-text-to-bigquery",
contactInformation = "https://cloud.google.com/support",
preview = true,
requirements = {
"The input data to tokenize must exist.",
"The Sensitive Data Protection templates must exist (for example, DeidentifyTemplate and InspectTemplate). For more details, see <a href=\"https://cloud.google.com/dlp/docs/concepts-templates\">Sensitive Data Protection templates</a>.",
"The BigQuery dataset must exist."
},
streaming = true,
hidden = true)
public class DLPTextToBigQueryStreaming {
public static final Logger LOG = LoggerFactory.getLogger(DLPTextToBigQueryStreaming.class);
/** Default interval for polling files in GCS. */
private static final Duration DEFAULT_POLL_INTERVAL = Duration.standardSeconds(30);
/** Expected only CSV file in GCS bucket. */
private static final String ALLOWED_FILE_EXTENSION = String.valueOf("csv");
/** Regular expression that matches valid BQ table IDs. */
private static final Pattern TABLE_REGEXP = Pattern.compile("[-\\w$@]{1,1024}");
/** Default batch size if value not provided in execution. */
private static final Integer DEFAULT_BATCH_SIZE = 100;
/** Regular expression that matches valid BQ column name . */
private static final Pattern COLUMN_NAME_REGEXP = Pattern.compile("^[A-Za-z_]+[A-Za-z_0-9]*$");
/** Default window interval to create side inputs for header records. */
private static final Duration WINDOW_INTERVAL = Duration.standardSeconds(30);
/**
* Main entry point for executing the pipeline. This will run the pipeline asynchronously. If
* blocking execution is required, use the {@link
* DLPTextToBigQueryStreaming#run(TokenizePipelineOptions)} method to start the pipeline and
* invoke {@code result.waitUntilFinish()} on the {@link PipelineResult}
*
* @param args The command-line arguments to the pipeline.
*/
public static void main(String[] args) {
TokenizePipelineOptions options =
PipelineOptionsFactory.fromArgs(args).withValidation().as(TokenizePipelineOptions.class);
run(options);
}
/**
* Runs the pipeline with the supplied options.
*
* @param options The execution parameters to the pipeline.
* @return The result of the pipeline execution.
*/
public static PipelineResult run(TokenizePipelineOptions options) {
// Create the pipeline
Pipeline p = Pipeline.create(options);
/*
* Steps:
* 1) Read from the text source continuously based on default interval e.g. 30 seconds
* - Setup a window for 30 secs to capture the list of files emitted.
* - Group by file name as key and ReadableFile as a value.
* 2) Output each readable file for content processing.
* 3) Split file contents based on batch size for parallel processing.
* 4) Process each split as a DLP table content request to invoke API.
* 5) Convert DLP Table Rows to BQ Table Row.
* 6) Create dynamic table and insert successfully converted records into BQ.
*/
PCollection<KV<String, Iterable<ReadableFile>>> csvFiles =
p
/*
* 1) Read from the text source continuously based on default interval e.g. 300 seconds
* - Setup a window for 30 secs to capture the list of files emitted.
* - Group by file name as key and ReadableFile as a value.
*/
.apply(
"Poll Input Files",
FileIO.match()
.filepattern(options.getInputFilePattern())
.continuously(DEFAULT_POLL_INTERVAL, Watch.Growth.never()))
.apply("Find Pattern Match", FileIO.readMatches().withCompression(Compression.AUTO))
.apply("Add File Name as Key", WithKeys.of(file -> getFileName(file)))
.setCoder(KvCoder.of(StringUtf8Coder.of(), ReadableFileCoder.of()))
.apply(
"Fixed Window(30 Sec)",
Window.<KV<String, ReadableFile>>into(FixedWindows.of(WINDOW_INTERVAL))
.triggering(
Repeatedly.forever(
AfterProcessingTime.pastFirstElementInPane()
.plusDelayOf(Duration.ZERO)))
.discardingFiredPanes()
.withAllowedLateness(Duration.ZERO))
.apply(GroupByKey.create());
PCollection<KV<String, TableRow>> bqDataMap =
csvFiles
// 2) Output each readable file for content processing.
.apply(
"File Handler",
ParDo.of(
new DoFn<KV<String, Iterable<ReadableFile>>, KV<String, ReadableFile>>() {
@ProcessElement
public void processElement(ProcessContext c) {
String fileKey = c.element().getKey();
c.element()
.getValue()
.forEach(
file -> {
c.output(KV.of(fileKey, file));
});
}
}))
// 3) Split file contents based on batch size for parallel processing.
.apply(
"Process File Contents",
ParDo.of(
new CSVReader(
NestedValueProvider.of(
options.getBatchSize(),
batchSize -> {
if (batchSize != null) {
return batchSize;
} else {
return DEFAULT_BATCH_SIZE;
}
}))))
// 4) Create a DLP Table content request and invoke DLP API for each processing
.apply(
"DLP-Tokenization",
ParDo.of(
new DLPTokenizationDoFn(
options.getDlpProjectId(),
options.getDeidentifyTemplateName(),
options.getInspectTemplateName())))
// 5) Convert DLP Table Rows to BQ Table Row
.apply("Process Tokenized Data", ParDo.of(new TableRowProcessorDoFn()));
// 6) Create dynamic table and insert successfully converted records into BQ.
bqDataMap.apply(
"Write To BQ",
BigQueryIO.<KV<String, TableRow>>write()
.to(new BQDestination(options.getDatasetName(), options.getDlpProjectId()))
.withFormatFunction(
element -> {
return element.getValue();
})
.withWriteDisposition(BigQueryIO.Write.WriteDisposition.WRITE_APPEND)
.withCreateDisposition(BigQueryIO.Write.CreateDisposition.CREATE_IF_NEEDED)
.withoutValidation()
.withFailedInsertRetryPolicy(InsertRetryPolicy.retryTransientErrors()));
return p.run();
}
/**
* The {@link TokenizePipelineOptions} interface provides the custom execution options passed by
* the executor at the command-line.
*/
public interface TokenizePipelineOptions extends DataflowPipelineOptions {
@TemplateParameter.GcsReadFile(
order = 1,
groupName = "Source",
description = "Input Cloud Storage File(s)",
helpText = "The CSV files to read input data records from. Wildcards are also accepted.",
example = "gs://mybucket/my_csv_filename.csv or gs://mybucket/file-*.csv")
ValueProvider<String> getInputFilePattern();
void setInputFilePattern(ValueProvider<String> value);
@TemplateParameter.Text(
order = 2,
groupName = "Source",
regexes = {
"^projects\\/[^\\n\\r\\/]+(\\/locations\\/[^\\n\\r\\/]+)?\\/deidentifyTemplates\\/[^\\n\\r\\/]+$"
},
description = "Cloud DLP deidentify template name",
helpText =
"The Sensitive Data Protection de-identification template to use for API requests, specified with the pattern projects/<PROJECT_ID>/deidentifyTemplates/<TEMPLATE_ID>.",
example =
"projects/your-project-id/locations/global/deidentifyTemplates/generated_template_id")
@Required
ValueProvider<String> getDeidentifyTemplateName();
void setDeidentifyTemplateName(ValueProvider<String> value);
@TemplateParameter.Text(
order = 3,
groupName = "DLP Configuration",
optional = true,
regexes = {
"^projects\\/[^\\n\\r\\/]+(\\/locations\\/[^\\n\\r\\/]+)?\\/inspectTemplates\\/[^\\n\\r\\/]+$"
},
description = "Cloud DLP inspect template name",
helpText =
"The Sensitive Data Protection inspection template to use for API requests, specified"
+ " with the pattern projects/<PROJECT_ID>/identifyTemplates/<TEMPLATE_ID>.",
example =
"projects/your-project-id/locations/global/inspectTemplates/generated_template_id")
ValueProvider<String> getInspectTemplateName();
void setInspectTemplateName(ValueProvider<String> value);
@TemplateParameter.Integer(
order = 4,
groupName = "DLP Configuration",
optional = true,
description = "Batch size",
helpText =
"The chunking or batch size to use for sending data to inspect and detokenize. For a CSV file, the value of `batchSize` is the number of rows in a batch."
+ " Determine the batch size based on the size of the records and the sizing of the file."
+ " The DLP API has a payload size limit of 524 KB per API call.")
@Required
ValueProvider<Integer> getBatchSize();
void setBatchSize(ValueProvider<Integer> value);
@TemplateParameter.Text(
order = 5,
groupName = "Target",
regexes = {"^[^.]*$"},
description = "BigQuery Dataset",
helpText =
"The BigQuery dataset to use when sending tokenized results. The dataset must exist prior to execution.")
ValueProvider<String> getDatasetName();
void setDatasetName(ValueProvider<String> value);
@TemplateParameter.ProjectId(
order = 6,
groupName = "DLP Configuration",
description = "Cloud DLP project ID",
helpText =
"The ID for the Google Cloud project that owns the DLP API resource. This project"
+ " can be the same project that owns the Sensitive Data Protection templates, or it"
+ " can be a separate project.")
ValueProvider<String> getDlpProjectId();
void setDlpProjectId(ValueProvider<String> value);
}
/**
* The {@link CSVReader} class uses experimental Split DoFn to split each csv file contents in
* chunks and process it in non-monolithic fashion. For example: if a CSV file has 100 rows and
* batch size is set to 15, then initial restrictions for the SDF will be 1 to 7 and split
* restriction will be {{1-2},{2-3}..{7-8}} for parallel executions.
*/
static class CSVReader extends DoFn<KV<String, ReadableFile>, KV<String, Table>> {
private ValueProvider<Integer> batchSize;
private PCollectionView<List<KV<String, List<String>>>> headerMap;
/** This counter is used to track number of lines processed against batch size. */
private Integer lineCount;
public CSVReader(ValueProvider<Integer> batchSize) {
lineCount = 1;
this.batchSize = batchSize;
}
@ProcessElement
public void processElement(ProcessContext c, RestrictionTracker<OffsetRange, Long> tracker)
throws IOException {
for (long i = tracker.currentRestriction().getFrom(); tracker.tryClaim(i); ++i) {
String fileKey = c.element().getKey();
try (BufferedReader br = getReader(c.element().getValue())) {
List<Table.Row> rows = new ArrayList<>();
Table dlpTable = null;
/** finding out EOL for this restriction so that we know the SOL */
int endOfLine = (int) (i * batchSize.get().intValue());
int startOfLine = (endOfLine - batchSize.get().intValue());
// getting the DLP table headers
Iterator<CSVRecord> csvRows = CSVFormat.DEFAULT.parse(br).iterator();
if (!csvRows.hasNext()) {
LOG.info("File `" + c.element().getKey() + "` is empty");
continue;
}
List<FieldId> dlpTableHeaders = toDlpTableHeaders(csvRows.next());
/** skipping all the rows that's not part of this restriction */
for (int line = 0; line < startOfLine; line++) {
if (csvRows.hasNext()) {
csvRows.next();
}
}
/** looping through buffered reader and creating DLP Table Rows equals to batch */
while (csvRows.hasNext() && lineCount <= batchSize.get()) {
CSVRecord csvRow = csvRows.next();
rows.add(convertCsvRowToTableRow(csvRow));
lineCount += 1;
}
/** creating DLP table and output for next transformation */
dlpTable = Table.newBuilder().addAllHeaders(dlpTableHeaders).addAllRows(rows).build();
c.output(KV.of(fileKey, dlpTable));
LOG.debug(
"Current Restriction From: {}, Current Restriction To: {},"
+ " StartofLine: {}, End Of Line {}, BatchData {}",
tracker.currentRestriction().getFrom(),
tracker.currentRestriction().getTo(),
startOfLine,
endOfLine,
dlpTable.getRowsCount());
}
}
}
private static List<FieldId> toDlpTableHeaders(CSVRecord headerRow) {
List<FieldId> result = new ArrayList<>();
for (String header : headerRow) {
result.add(FieldId.newBuilder().setName(header).build());
}
return result;
}
/**
* SDF needs to define a @GetInitialRestriction method that can create a restriction describing
* the complete work for a given element. For our case this would be the total number of rows
* for each CSV file. We will calculate the number of split required based on total number of
* rows and batch size provided.
*
* @throws IOException
*/
@GetInitialRestriction
public OffsetRange getInitialRestriction(@Element KV<String, ReadableFile> csvFile)
throws IOException {
int rowCount = 0;
int totalSplit = 0;
try (BufferedReader br = getReader(csvFile.getValue())) {
/** assume first row is header */
int checkRowCount = (int) br.lines().count() - 1;
rowCount = (checkRowCount < 1) ? 1 : checkRowCount;
totalSplit = rowCount / batchSize.get().intValue();
int remaining = rowCount % batchSize.get().intValue();
/**
* Adjusting the total number of split based on remaining rows. For example: batch size of
* 15 for 100 rows will have total 7 splits. As it's a range last split will have offset
* range {7,8}
*/
if (remaining > 0) {
totalSplit = totalSplit + 2;
} else {
totalSplit = totalSplit + 1;
}
}
LOG.debug("Initial Restriction range from 1 to: {}", totalSplit);
return new OffsetRange(1, totalSplit);
}
/**
* SDF needs to define a @SplitRestriction method that can split the initial restriction to a
* number of smaller restrictions. For example: a initial restriction of (x, N) as input and
* produces pairs (x, 0), (x, 1), …, (x, N-1) as output.
*/
@SplitRestriction
public void splitRestriction(
@Element KV<String, ReadableFile> csvFile,
@Restriction OffsetRange range,
OutputReceiver<OffsetRange> out) {
/** split the initial restriction by 1 */
for (final OffsetRange p : range.split(1, 1)) {
out.output(p);
}
}
@NewTracker
public OffsetRangeTracker newTracker(@Restriction OffsetRange range) {
return new OffsetRangeTracker(new OffsetRange(range.getFrom(), range.getTo()));
}
private Table.Row convertCsvRowToTableRow(CSVRecord csvRow) {
/** convert from CSV row to DLP Table Row */
Iterator<String> valueIterator = csvRow.iterator();
Table.Row.Builder tableRowBuilder = Table.Row.newBuilder();
while (valueIterator.hasNext()) {
String value = valueIterator.next();
if (value != null) {
tableRowBuilder.addValues(Value.newBuilder().setStringValue(value.toString()).build());
} else {
tableRowBuilder.addValues(Value.newBuilder().setStringValue("").build());
}
}
return tableRowBuilder.build();
}
private List<String> getHeaders(List<KV<String, List<String>>> headerMap, String fileKey) {
return headerMap.stream()
.filter(map -> map.getKey().equalsIgnoreCase(fileKey))
.findFirst()
.map(e -> e.getValue())
.orElse(null);
}
}
/**
* The {@link DLPTokenizationDoFn} class executes tokenization request by calling DLP api. It uses
* DLP table as a content item as CSV file contains fully structured data. DLP templates (e.g.
* de-identify, inspect) need to exist before this pipeline runs. As response from the API is
* received, this DoFn outputs KV of new table with table id as key.
*/
static class DLPTokenizationDoFn extends DoFn<KV<String, Table>, KV<String, Table>> {
private ValueProvider<String> dlpProjectId;
private DlpServiceClient dlpServiceClient;
private ValueProvider<String> deIdentifyTemplateName;
private ValueProvider<String> inspectTemplateName;
private boolean inspectTemplateExist;
private Builder requestBuilder;
private final Distribution numberOfRowsTokenized =
Metrics.distribution(DLPTokenizationDoFn.class, "numberOfRowsTokenizedDistro");
private final Distribution numberOfBytesTokenized =
Metrics.distribution(DLPTokenizationDoFn.class, "numberOfBytesTokenizedDistro");
public DLPTokenizationDoFn(
ValueProvider<String> dlpProjectId,
ValueProvider<String> deIdentifyTemplateName,
ValueProvider<String> inspectTemplateName) {
this.dlpProjectId = dlpProjectId;
this.dlpServiceClient = null;
this.deIdentifyTemplateName = deIdentifyTemplateName;
this.inspectTemplateName = inspectTemplateName;
this.inspectTemplateExist = false;
}
@Setup
public void setup() {
if (this.inspectTemplateName.isAccessible()) {
if (this.inspectTemplateName.get() != null) {
this.inspectTemplateExist = true;
}
}
if (this.deIdentifyTemplateName.isAccessible()) {
if (this.deIdentifyTemplateName.get() != null) {
this.requestBuilder =
DeidentifyContentRequest.newBuilder()
.setParent(ProjectName.of(this.dlpProjectId.get()).toString())
.setDeidentifyTemplateName(this.deIdentifyTemplateName.get());
if (this.inspectTemplateExist) {
this.requestBuilder.setInspectTemplateName(this.inspectTemplateName.get());
}
}
}
}
@StartBundle
public void startBundle() throws SQLException {
try {
this.dlpServiceClient = DlpServiceClient.create();
} catch (IOException e) {
LOG.error("Failed to create DLP Service Client", e.getMessage());
throw new RuntimeException(e);
}
}
@FinishBundle
public void finishBundle() throws Exception {
if (this.dlpServiceClient != null) {
this.dlpServiceClient.close();
}
}
@ProcessElement
public void processElement(ProcessContext c) {
String key = c.element().getKey();
Table nonEncryptedData = c.element().getValue();
ContentItem tableItem = ContentItem.newBuilder().setTable(nonEncryptedData).build();
this.requestBuilder.setItem(tableItem);
DeidentifyContentResponse response =
dlpServiceClient.deidentifyContent(this.requestBuilder.build());
Table tokenizedData = response.getItem().getTable();
numberOfRowsTokenized.update(tokenizedData.getRowsList().size());
numberOfBytesTokenized.update(tokenizedData.toByteArray().length);
c.output(KV.of(key, tokenizedData));
}
}
/**
* The {@link TableRowProcessorDoFn} class process tokenized DLP tables and convert them to
* BigQuery Table Row.
*/
public static class TableRowProcessorDoFn extends DoFn<KV<String, Table>, KV<String, TableRow>> {
@ProcessElement
public void processElement(ProcessContext c) {
Table tokenizedData = c.element().getValue();
List<String> headers =
tokenizedData.getHeadersList().stream()
.map(fid -> fid.getName())
.collect(Collectors.toList());
List<Table.Row> outputRows = tokenizedData.getRowsList();
if (outputRows.size() > 0) {
for (Table.Row outputRow : outputRows) {
if (outputRow.getValuesCount() != headers.size()) {
throw new IllegalArgumentException(
"CSV file's header count must exactly match with data element count");
}
c.output(
KV.of(
c.element().getKey(),
createBqRow(outputRow, headers.toArray(new String[headers.size()]))));
}
}
}
private static TableRow createBqRow(Table.Row tokenizedValue, String[] headers) {
TableRow bqRow = new TableRow();
AtomicInteger headerIndex = new AtomicInteger(0);
List<TableCell> cells = new ArrayList<>();
tokenizedValue
.getValuesList()
.forEach(
value -> {
String checkedHeaderName =
checkHeaderName(headers[headerIndex.getAndIncrement()].toString());
bqRow.set(checkedHeaderName, value.getStringValue());
cells.add(new TableCell().set(checkedHeaderName, value.getStringValue()));
});
bqRow.setF(cells);
return bqRow;
}
}
/**
* The {@link BQDestination} class creates BigQuery table destination and table schema based on
* the CSV file processed in earlier transformations. Table id is same as filename Table schema is
* same as file header columns.
*/
public static class BQDestination
extends DynamicDestinations<KV<String, TableRow>, KV<String, TableRow>> {
private ValueProvider<String> datasetName;
private ValueProvider<String> projectId;
public BQDestination(ValueProvider<String> datasetName, ValueProvider<String> projectId) {
this.datasetName = datasetName;
this.projectId = projectId;
}
@Override
public KV<String, TableRow> getDestination(ValueInSingleWindow<KV<String, TableRow>> element) {
String key = element.getValue().getKey();
String tableName = String.format("%s:%s.%s", projectId.get(), datasetName.get(), key);
LOG.debug("Table Name {}", tableName);
return KV.of(tableName, element.getValue().getValue());
}
@Override
public TableDestination getTable(KV<String, TableRow> destination) {
TableDestination dest =
new TableDestination(destination.getKey(), "pii-tokenized output data from dataflow");
LOG.debug("Table Destination {}", dest.getTableSpec());
return dest;
}
@Override
public TableSchema getSchema(KV<String, TableRow> destination) {
TableRow bqRow = destination.getValue();
TableSchema schema = new TableSchema();
List<TableFieldSchema> fields = new ArrayList<TableFieldSchema>();
List<TableCell> cells = bqRow.getF();
for (int i = 0; i < cells.size(); i++) {
Map<String, Object> object = cells.get(i);
String header = object.keySet().iterator().next();
/** currently all BQ data types are set to String */
fields.add(new TableFieldSchema().setName(checkHeaderName(header)).setType("STRING"));
}
schema.setFields(fields);
return schema;
}
}
private static String getFileName(ReadableFile file) {
String csvFileName = file.getMetadata().resourceId().getFilename().toString();
/** taking out .csv extension from file name e.g fileName.csv->fileName */
String[] fileKey = csvFileName.split("\\.", 2);
if (!fileKey[1].equals(ALLOWED_FILE_EXTENSION) || !TABLE_REGEXP.matcher(fileKey[0]).matches()) {
throw new RuntimeException(
"[Filename must contain a CSV extension "
+ " BQ table name must contain only letters, numbers, or underscores ["
+ fileKey[1]
+ "], ["
+ fileKey[0]
+ "]");
}
/** returning file name without extension */
return fileKey[0];
}
private static BufferedReader getReader(ReadableFile csvFile) {
BufferedReader br = null;
ReadableByteChannel channel = null;
/** read the file and create buffered reader */
try {
channel = csvFile.openSeekable();
} catch (IOException e) {
LOG.error("Failed to Read File {}", e.getMessage());
throw new RuntimeException(e);
}
if (channel != null) {
br = new BufferedReader(Channels.newReader(channel, StandardCharsets.UTF_8.name()));
}
return br;
}
private static String checkHeaderName(String name) {
/** some checks to make sure BQ column names don't fail e.g. special characters */
String checkedHeader = name.replaceAll("\\s", "_");
checkedHeader = checkedHeader.replaceAll("'", "");
checkedHeader = checkedHeader.replaceAll("/", "");
if (!COLUMN_NAME_REGEXP.matcher(checkedHeader).matches()) {
throw new IllegalArgumentException("Column name can't be matched to a valid format " + name);
}
return checkedHeader;
}
}
次のステップ
- Dataflow テンプレートについて学習する。
- Google 提供のテンプレートのリストを確認する。