Modelo do AstraDB para o BigQuery

O modelo AstraDB para BigQuery é um pipeline em lote que lê registros do AstraDB e os grava no BigQuery.

Se a tabela de destino não existir no BigQuery, o pipeline criará uma tabela com os seguintes valores:

  • O Dataset ID, que é herdado do keyspace do Cassandra.
  • O Table ID, que é herdado da tabela do Cassandra.

O esquema da tabela de destino é inferido da tabela de origem do Cassandra.

  • List e Set são mapeados para campos REPEATED do BigQuery.
  • Map são mapeados para campos RECORD do BigQuery.
  • Todos os outros tipos são mapeados para campos do BigQuery com os tipos correspondentes.
  • Os tipos definidos pelo usuário (UDTs, na sigla em inglês) e de dados de tupla do Cassandra não são compatíveis.

Requisitos de pipeline

  • Conta do AstraDB com um token

Parâmetros do modelo

Parâmetros obrigatórios

  • astraToken: valor do token ou ID do recurso secreto. Por exemplo, AstraCS:abcdefghij.
  • astraDatabaseId: o identificador exclusivo do banco de dados (UUID). Por exemplo, cf7af129-d33a-498f-ad06-d97a6ee6eb7.
  • astraKeyspace: o nome do keyspace do Cassandra no banco de dados do Astra.
  • astraTable: o nome da tabela no banco de dados do Cassandra. Por exemplo, my_table.

Parâmetros opcionais

  • astraQuery: a consulta a ser usada para filtrar linhas em vez de ler a tabela inteira.
  • astraDatabaseRegion: se não for fornecido, será escolhido um padrão, que é útil em bancos de dados multirregionais.
  • minTokenRangesCount: o número mínimo de divisões a serem usadas para distribuir a consulta.
  • outputTableSpec: o local da tabela do BigQuery em que a saída será gravada. Use o formato <PROJECT_ID>:<DATASET_NAME>.<TABLE_NAME>. O esquema da tabela precisa corresponder aos objetos de entrada.

Executar o modelo

  1. Acesse a página Criar job usando um modelo do Dataflow.
  2. Acesse Criar job usando um modelo
  3. No campo Nome do job, insira um nome exclusivo.
  4. Opcional: em Endpoint regional, selecione um valor no menu suspenso. A região padrão é us-central1.

    Para ver uma lista de regiões em que é possível executar um job do Dataflow, consulte Locais do Dataflow.

  5. No menu suspenso Modelo do Dataflow, selecione the AstraDB to BigQuery template.
  6. Nos campos de parâmetro fornecidos, insira os valores de parâmetro.
  7. Cliquem em Executar job.

No shell ou no terminal, execute o modelo:

gcloud dataflow flex-template run JOB_NAME \
    --template-file-gcs-location=gs://dataflow-templates-REGION_NAME/VERSION/flex/AstraDB_To_BigQuery \
    --project=PROJECT_ID \
    --region=REGION_NAME \
    --parameters \
       astraToken=ASTRA_TOKEN,\
       astraDatabaseId=ASTRA_DATABASE_ID,\
       astraKeyspace=ASTRA_KEYSPACE,\
       astraTable=ASTRA_TABLE,\

Substitua:

  • JOB_NAME: um nome de job de sua escolha
  • VERSION: a versão do modelo que você quer usar

    Use estes valores:

  • REGION_NAME: a região em que você quer implantar o job do Dataflow, por exemplo, us-central1
  • ASTRA_TOKEN: o token do Astra
  • ASTRA_DATABASE_ID: o identificador do banco de dados
  • ASTRA_KEYSPACE: o keyspace do Cassandra
  • ASTRA_TABLE: a tabela do Cassandra

Para executar o modelo usando a API REST, envie uma solicitação HTTP POST. Para mais informações sobre a API e os respectivos escopos de autorização, consulte projects.templates.launch.

POST https://dataflow.googleapis.com/v1b3/projects/PROJECT_ID/locations/LOCATION/flexTemplates:launch
{
   "launchParameter": {
     "jobName": "JOB_NAME",
     "parameters": {
       "astraToken": "ASTRA_TOKEN",
       "astraDatabaseId": "ASTRA_DATABASE_ID",
       "astraKeyspace": "ASTRA_KEYSPACE",
       "astraTable": "ASTRA_TABLE",
     },
     "containerSpecGcsPath": "gs://dataflow-templates-LOCATION/VERSION/flex/AstraDB_To_BigQuery",
     "environment": { "maxWorkers": "10" }
  }
}

Substitua:

  • PROJECT_ID: o ID do projeto do Google Cloud em que você quer executar o job do Dataflow
  • JOB_NAME: um nome de job de sua escolha
  • VERSION: a versão do modelo que você quer usar

    Use estes valores:

  • LOCATION: a região em que você quer implantar o job do Dataflow, por exemplo, us-central1
  • ASTRA_TOKEN: o token do Astra
  • ASTRA_DATABASE_ID: o identificador do banco de dados
  • ASTRA_KEYSPACE: o keyspace do Cassandra
  • ASTRA_TABLE: a tabela do Cassandra
Java
/*
 * Copyright (C) 2023 Google LLC
 *
 * Licensed under the Apache License, Version 2.0 (the "License"); you may not
 * use this file except in compliance with the License. You may obtain a copy of
 * the License at
 *
 *   http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
 * WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
 * License for the specific language governing permissions and limitations under
 * the License.
 */
package com.google.cloud.teleport.v2.astradb.templates;

import com.datastax.oss.driver.api.core.CqlSession;
import com.dtsx.astra.sdk.db.DatabaseClient;
import com.google.api.services.bigquery.model.TableReference;
import com.google.api.services.bigquery.model.TableSchema;
import com.google.cloud.bigquery.BigQuery;
import com.google.cloud.bigquery.BigQueryOptions;
import com.google.cloud.bigquery.DatasetId;
import com.google.cloud.bigquery.DatasetInfo;
import com.google.cloud.teleport.metadata.Template;
import com.google.cloud.teleport.metadata.TemplateCategory;
import com.google.cloud.teleport.v2.astradb.options.AstraDbToBigQueryOptions;
import com.google.cloud.teleport.v2.astradb.transforms.AstraDbToBigQueryMappingFn;
import com.google.cloud.teleport.v2.common.UncaughtExceptionLogger;
import com.google.cloud.teleport.v2.utils.SecretManagerUtils;
import java.util.AbstractMap;
import org.apache.beam.sdk.Pipeline;
import org.apache.beam.sdk.coders.SerializableCoder;
import org.apache.beam.sdk.io.astra.db.AstraDbIO;
import org.apache.beam.sdk.io.astra.db.CqlSessionHolder;
import org.apache.beam.sdk.io.astra.db.mapping.AstraDbMapper;
import org.apache.beam.sdk.io.astra.db.mapping.BeamRowDbMapperFactoryFn;
import org.apache.beam.sdk.io.gcp.bigquery.BigQueryIO;
import org.apache.beam.sdk.io.gcp.bigquery.BigQueryUtils;
import org.apache.beam.sdk.options.PipelineOptions;
import org.apache.beam.sdk.options.PipelineOptionsFactory;
import org.apache.beam.sdk.transforms.SerializableFunction;
import org.apache.beam.sdk.values.Row;
import org.apache.commons.lang3.StringUtils;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

/**
 * The {@link AstraDbToBigQuery} pipeline is a batch pipeline which ingests data from AstraDB and
 * outputs the resulting records to BigQuery.
 *
 * <p>Check out <a
 * href="https://github.com/GoogleCloudPlatform/DataflowTemplates/blob/main/v2/astradb-to-bigquery/README_AstraDB_to_BigQuery.md">README</a>
 * for instructions on how to use or modify this template.
 */
@Template(
    name = "AstraDB_To_BigQuery",
    category = TemplateCategory.BATCH,
    displayName = "AstraDB to BigQuery",
    description = {
      "The AstraDB to BigQuery template is a batch pipeline that reads records from AstraDB and writes them to BigQuery.",
      "If the destination table doesn't exist in BigQuery, the pipeline creates a table with the following values:\n"
          + "- The `Dataset ID` is inherited from the Cassandra keyspace.\n"
          + "- The `Table ID` is inherited from the Cassandra table.\n",
      "The schema of the destination table is inferred from the source Cassandra table.\n"
          + "- `List` and `Set` are mapped to BigQuery `REPEATED` fields.\n"
          + "- `Map` are mapped to BigQuery `RECORD` fields.\n"
          + "- All other types are mapped to BigQuery fields with the corresponding types.\n"
          + "- Cassandra user-defined types (UDTs) and tuple data types are not supported."
    },
    optionsClass = AstraDbToBigQuery.Options.class,
    flexContainerName = "astradb-to-bigquery",
    documentation =
        "https://cloud.google.com/dataflow/docs/guides/templates/provided/astradb-to-bigquery",
    contactInformation = "https://cloud.google.com/support",
    preview = true,
    requirements = {"AstraDB account with a token"})
public class AstraDbToBigQuery {

  /** Logger for the class. */
  private static final Logger LOGGER = LoggerFactory.getLogger(AstraDbToBigQuery.class);

  /** If not provided, it is the default token range value. */
  public static final int DEFAULT_TOKEN_RANGE = 18;

  /**
   * Options for the sample
   *
   * <p>Inherits standard configuration options.
   */
  public interface Options
      extends PipelineOptions,
          AstraDbToBigQueryOptions.AstraDbSourceOptions,
          AstraDbToBigQueryOptions.BigQueryWriteOptions {}

  /** Main operations. */
  public static void main(String[] args) {
    UncaughtExceptionLogger.register();
    LOGGER.info("Starting pipeline");

    try {

      Options options = PipelineOptionsFactory.fromArgs(args).withValidation().as(Options.class);
      LOGGER.debug("Pipeline Arguments (options) validated");

      // --------------------------------
      // AstraDbIO.Read<Row>
      // --------------------------------

      // Credentials are read from secrets manager
      AbstractMap.SimpleImmutableEntry<String, byte[]> astraCredentials =
          parseAstraCredentials(options);
      LOGGER.debug("Astra Credentials parsed");

      // Map Cassandra Table Schema into BigQuery Table Schema
      SerializableFunction<AstraDbIO.Read<?>, TableSchema> bigQuerySchemaFactory =
          new AstraDbToBigQueryMappingFn(options.getAstraKeyspace(), options.getAstraTable());
      LOGGER.debug("Schema Mapper has been initialized");

      // Map Cassandra Rows into (Apache) Beam Rows (DATA)
      SerializableFunction<CqlSession, AstraDbMapper<Row>> beamRowMapperFactory =
          new BeamRowDbMapperFactoryFn(options.getAstraKeyspace(), options.getAstraTable());
      LOGGER.debug("Row Mapper has been initialized");

      // Distribute reads across all available Cassandra nodes
      int minimalTokenRangesCount =
          (options.getMinTokenRangesCount() == null)
              ? DEFAULT_TOKEN_RANGE
              : options.getMinTokenRangesCount();

      // Source: AstraDb
      AstraDbIO.Read<Row> astraSource =
          AstraDbIO.<Row>read()
              .withToken(astraCredentials.getKey())
              .withSecureConnectBundle(astraCredentials.getValue())
              .withKeyspace(options.getAstraKeyspace())
              .withTable(options.getAstraTable())
              .withMinNumberOfSplits(minimalTokenRangesCount)
              .withMapperFactoryFn(beamRowMapperFactory)
              .withCoder(SerializableCoder.of(Row.class))
              .withEntity(Row.class);
      LOGGER.debug("AstraDb Source initialization [OK]");

      // --------------------------------
      //  BigQueryIO.Write<Row>
      // --------------------------------

      TableReference bqTableRef = parseBigQueryDestinationTable(options);
      createBigQueryDestinationTableIfNotExist(options, bqTableRef);
      LOGGER.debug("BigQuery Sink Table has been initialized");

      // Sink: BigQuery
      BigQueryIO.Write<Row> bigQuerySink =
          BigQueryIO.<Row>write()
              .to(bqTableRef)
              // Specialized function reading cassandra source table and mapping to BigQuery Schema
              .withSchema(bigQuerySchemaFactory.apply(astraSource))
              // Provided by google, convert a Beam Row to a BigQuery TableRow
              .withFormatFunction(row -> row != null ? BigQueryUtils.toTableRow(row) : null)
              // Table Will be created if not exist
              .withCreateDisposition(BigQueryIO.Write.CreateDisposition.CREATE_IF_NEEDED)
              .withWriteDisposition(BigQueryIO.Write.WriteDisposition.WRITE_APPEND);
      LOGGER.debug("BigQuery Sink initialization [OK]");

      // --------------------------------
      //  Pipeline
      // --------------------------------

      Pipeline astraDbToBigQueryPipeline = Pipeline.create(options);
      astraDbToBigQueryPipeline
          .apply("Read From Astra", astraSource)
          .apply("Write To BigQuery", bigQuerySink);
      astraDbToBigQueryPipeline.run();

    } finally {
      // Cassandra Connection is stateful and needs to be closed
      CqlSessionHolder.cleanup();
    }
  }

  /**
   * Parse Astra Credentials from secrets in secret Manager. - SecretManagerUtils is not used as
   * only applied to String secrets
   *
   * @param options pipeline options
   * @return a pair with the token and the secure bundle
   */
  private static AbstractMap.SimpleImmutableEntry<String, byte[]> parseAstraCredentials(
      Options options) {

    String astraToken = options.getAstraToken();
    if (!astraToken.startsWith("AstraCS")) {
      astraToken = SecretManagerUtils.getSecret(options.getAstraToken());
    }
    LOGGER.info("Astra Token is parsed, value={}", astraToken.substring(0, 10) + "...");
    /*
     * Accessing the devops Api to retrieve the secure bundle.
     */
    DatabaseClient astraDbClient = new DatabaseClient(astraToken, options.getAstraDatabaseId());
    if (!astraDbClient.exist()) {
      throw new RuntimeException(
          "Astra Database does not exist, please check your Astra Token and Database ID");
    }
    byte[] astraSecureBundle = astraDbClient.downloadDefaultSecureConnectBundle();
    if (!StringUtils.isEmpty(options.getAstraDatabaseRegion())) {
      astraSecureBundle =
          astraDbClient.downloadSecureConnectBundle(options.getAstraDatabaseRegion());
    }
    LOGGER.info("Astra Bundle is parsed, length={}", astraSecureBundle.length);
    return new AbstractMap.SimpleImmutableEntry<>(astraToken, astraSecureBundle);
  }

  /**
   * Create the Bog Query table Reference (provided or based on Cassandra table name).
   *
   * @param options pipeline options
   * @return the big query table reference
   */
  private static TableReference parseBigQueryDestinationTable(Options options) {
    /*
     * bigQueryOutputTableSpec argument is the Big Query table specification. This is parameter
     * is optional. If not set, the table specification is built from the cassandra source table
     * attributes: keyspace=dataset name, table=table name.
     */
    String bigQueryOutputTableSpec = options.getOutputTableSpec();
    if (StringUtils.isEmpty(bigQueryOutputTableSpec)) {
      bigQueryOutputTableSpec =
          options.getProject() + ":" + options.getAstraKeyspace() + "." + options.getAstraTable();
    }
    TableReference bigQueryTableReference = BigQueryUtils.toTableReference(bigQueryOutputTableSpec);
    LOGGER.info("Big Query table spec has been set to {}", bigQueryOutputTableSpec);
    return bigQueryTableReference;
  }

  /**
   * Create destination dataset and tables if needed (schema mapped from Cassandra).
   *
   * @param options pipeline options
   * @param bqTableRef big query table reference
   */
  private static void createBigQueryDestinationTableIfNotExist(
      Options options, TableReference bqTableRef) {
    BigQuery bigquery =
        BigQueryOptions.newBuilder().setProjectId(options.getProject()).build().getService();
    if (null
        == bigquery.getDataset(
            DatasetId.of(bqTableRef.getProjectId(), bqTableRef.getDatasetId()))) {
      LOGGER.info(
          "Dataset was not found: creating DataSet {} in region {}",
          bqTableRef.getDatasetId(),
          options.getWorkerRegion());
      bigquery.create(
          DatasetInfo.newBuilder(bqTableRef.getDatasetId())
              .setLocation(options.getWorkerRegion())
              .build());
      LOGGER.debug("Dataset has been created [OK]");
    } else {
      LOGGER.info("Dataset {} already exist", bqTableRef.getDatasetId());
    }
  }
}

A seguir