Instanzen mit GPU-Beschleunigern ausführen

Auf dieser Seite wird beschrieben, wie Sie die GPU-Hardwarebeschleuniger (GPU) von NVIDIA für Container-Optimized OS-VM-Instanzen verwenden.

Übersicht

Mit Compute Engine können Sie VM-Instanzen erstellen, Container-Optimized OS mit angehängten GPUs Sie können nur zwei Maschinenfamilien beim Ausführen von GPUs in Compute Engine: beschleunigeroptimiert und N1 für allgemeine Zwecke.

  • Bei beschleunigeroptimierten Maschinentypen hat jeder Maschinentyp eine bestimmte der angehängten NVIDIA-GPUs.

    • Bei beschleunigeroptimierten A3-Maschinentypen NVIDIA H100-GPUs mit 80 GB sind angeschlossen.
    • Bei A2-beschleunigeroptimierten Maschinentypen NVIDIA A100-GPUs sind angeschlossen. Diese sind in den Optionen A100 mit 40 GB sowie A100 mit 80 GB verfügbar.
    • Bei G2-beschleunigeroptimierten Maschinentypen NVIDIA L4-GPUs sind angeschlossen.
  • An N1-Maschinentypen für allgemeine Zwecke können Sie die folgenden GPUs anhängen:

GPUs bieten Rechenleistung für Deep-Learning-Aufgaben wie die Bilderkennung. Natural Language Processing sowie andere rechenintensive Aufgaben wie Videotranscodierung und Bildverarbeitung.

Mit Google Cloud können Sie Ihre GPU-Arbeitslasten nahtlos ausführen in Containern auf VM-Instanzen mit Container-Optimized OS zu speichern, können Sie auch von anderen Container-Optimized OS-Features profitieren, wie z. B. Sicherheit und Zuverlässigkeit.

Weitere Informationen zu den Anwendungsfällen für GPUs finden Sie unter Cloud-GPUs.

Informationen zur Verwendung von GPUs in Google Kubernetes Engine (GKE) finden Sie unter GPUs in GKE ausführen.

Voraussetzungen

Für die Ausführung von GPUs auf Container-Optimized OS-VM-Instanzen gelten folgende Anforderungen:

  • x86-Images von Container-Optimized OS:nur x86-basiertes Container-Optimized OS Images unterstützen das Ausführen von GPUs. ARM-basierte Container-Optimized OS-Images die die Funktion unterstützen.

  • Version des Container-Optimized OS: Um GPUs auf Container-Optimized OS-VM-Instanzen auszuführen, muss der Meilenstein-Release des Container-Optimized OS ein LTS-Meilenstein und die Meilensteinnummer mindestens 85 sein.

  • GPU-Kontingent: Sie müssen ein Compute Engine-GPU-Kontingent haben. in der ausgewählten Zone, bevor Sie eine Container-Optimized OS-VM erstellen können Instanzen mit GPUs. Damit Sie in Ihrem Projekt ein ausreichendes GPU-Kontingent haben, Siehe Kontingente in der Google Cloud Console.

    Wenn Sie zusätzliche GPU-Kontingente benötigen, In der Google Cloud Console können Sie das GPU-Kontingent anfordern. Falls Sie ein Abrechnungskonto eingerichtet haben, erhält Ihr Projekt nach dem Einreichen Ihrer Kontingentanfrage automatisch ein GPU-Kontingent.

  • NVIDIA-GPU-Treiber: Sie müssen NVIDIA GPU-Treiber manuell auf Ihren VM-Instanzen mit Container-Optimized OS installieren. In diesem Abschnitt wird erläutert, wie Sie die Treiber auf VM-Instanzen von Container-Optimized OS installieren.

VM erstellen

In den folgenden Abschnitten wird erläutert, wie GPUs unter Container-Optimized OS ausgeführt werden. VMs

Zuerst benötigen Sie eine VM-Instanz mit Container-Optimized OS und GPUs. Die Methode zum Erstellen einer VM hängt vom ausgewählten GPU-Modell ab.

Sie können auch GPUs hinzufügen. auf vorhandenen Container-Optimized OS-VM-Instanzen.

Denken Sie beim Erstellen von VMs daran, Images oder Image-Familien aus der folgenden Liste auszuwählen: Das Image-Projekt cos-cloud.

Führen Sie den folgenden Befehl aus, um alle GPUs zu prüfen, die Ihren aktuellen VM-Instanzen mit Container-Optimized OS zugeordnet sind:

gcloud compute instances describe INSTANCE_NAME \
    --project=PROJECT_ID \
    --zone ZONE \
    --format="value(guestAccelerators)"

Dabei gilt:

  • INSTANCE_NAME ist der Name der neuen VM-Instanz.
  • PROJECT_ID ist Ihre Projekt-ID.
  • zone ist die Zone der VM-Instanz.

NVIDIA-GPU-Gerätetreiber installieren

Nachdem Sie eine Instanz mit einer oder mehreren GPUs erstellt haben, benötigt Ihr System Gerätetreiber, damit Ihre Anwendungen auf das Gerät zugreifen können. In dieser Anleitung wird beschrieben, wie Sie NVIDIA-eigenständige Treiber auf Container-Optimized OS-VM-Instanzen installieren können.

Container-Optimized OS stellt dasintegrierte Dienstprogramm cos-extensions zur Vereinfachung der Installation von NVIDIA-Treibern bereit. Durch Ausführen des Dienstprogramms stimmen Nutzer der NVIDIA-Lizenzvereinbarung zu.

GPU-Treiberversionen identifizieren

Jede Version eines Container-Optimized OS-Images hat eine standardmäßig unterstützte NVIDIA GPU-Treiberversion. In den Versionshinweisen zu den wichtigsten LTS-Meilensteinen für Container-Optimized OS finden Sie die standardmäßig unterstützte Version.

Sie können auch alle unterstützten GPU-Treiberversionen prüfen. Führen Sie dazu folgenden Befehl auf Ihrer VM-Instanz unter dem Container-Optimized OS aus:

sudo cos-extensions list

Erforderliche Version des CUDA-Toolkits ermitteln

Wenn Ihre Anwendungen CUDA verwenden, das NVIDIA CUDA-Toolkit in Ihren Containern. Für jede CUDA-Version ist mindestens eine GPU-Treiberversion oder eine neuere Version erforderlich. Informationen zum Prüfen der für Ihre CUDA-Version erforderlichen Mindest-GPU-Treiberversion finden Sie unter CUDA-Toolkit und kompatible Treiberversionen. Achten Sie darauf, dass die von Ihnen verwendete Container Optimized OS-Version die GPU-Treiberversion für die von Ihnen verwendete CUDA-Version hat.

Treiber installieren

Sie können GPUs mithilfe von Shell-Befehlen, Startskripts oder cloud-init. Alle drei Methoden verwenden den Befehl sudo cos-extensions install gpu. um den Standard-GPU-Treiber für Ihre Version von Container-Optimized OS LTS zu installieren.

Shell

Nach dem Herstellen einer Verbindung zu Ihren Container-Optimized OS-VM-Instanzen können Sie folgenden Befehl manuell ausführen, um Treiber zu installieren:

sudo cos-extensions install gpu

Startskripts

Sie können GPU-Treiber auch mithilfe von Startskripts installieren. Sie können das Startskript angeben, wenn Sie VM-Instanzen erstellen, das Skript auf laufende VM-Instanzen anwenden und die VMs dann neu starten, um die Option zu aktivieren. So können Sie Treiber installieren, ohne eine Verbindung zu den VMs. Außerdem werden die GPU-Treiber bei jedem VM-Neustart konfiguriert.

Das folgende Beispiel zeigt ein Startskript zum Installieren von Treibern:

#! /bin/bash

sudo cos-extensions install gpu

Cloud-init

"cloud-init" ähnelt Startskripts, ist jedoch leistungsfähiger. Im folgenden Beispiel wird gezeigt, wie Sie GPU-Treiber über cloud-init installieren:

#cloud-config

runcmd:
  - cos-extensions install gpu

Mit cloud-init können Sie die Abhängigkeiten angeben, damit Ihre GPU Anwendungen werden erst ausgeführt, nachdem der Treiber installiert wurde. Weitere Informationen finden Sie im Abschnitt End-to-End: GPU-Anwendung auf Container-Optimized-OS ausführen.

Weitere Informationen zur Verwendung von cloud-init auf VM-Instanzen mit Container-Optimized-OS finden Sie auf der Seite Instanzen erstellen und konfigurieren.

In einigen Fällen ist der im Container-Optimized OS enthaltene Standardtreiber die Treiberanforderungen Ihres CUDA-Toolkits oder Ihres GPU-Modell. Siehe Erforderlicher NVIDIA-Treiber Versionen für die Versionsanforderungen für bestimmte GPU-Typen.

Führen Sie den folgenden Befehl aus, um eine bestimmte GPU-Treiberversion zu installieren:

sudo cos-extensions install gpu -- -version=DRIVER_VERSION

Ersetzen Sie DRIVER_VERSION durch einen der folgenden Werte: Optionen:

  • default: Installiert den vom Release von Container-Optimized OS. Diese Version erhält Fehlerkorrekturen und Sicherheitsupdates.
  • latest: Installiert den neuesten Treiber, der im Release von Container-Optimized OS. Beachten Sie, dass dies Änderungen an der Kompatibilität aufgrund potenzieller Hauptversionsupdates für COS Veröffentlichungen.
  • Vollversion: Hiermit können Sie eine bestimmte Version für Arbeitslasten festlegen empfindlich auf Fahränderungen reagieren. Geben Sie beispielsweise die Version 535.183.01 an.
  • NVIDIA-Treiberzweig: Installiert den neuesten stabilen Treiber in einem bestimmten NVIDIA-Zweig, um über Sicherheitsupdates und Fehlerkorrekturen auf dem Laufenden zu bleiben Branch. Geben Sie beispielsweise Zweig R535 an. Diese Option ist verfügbar ab von cos-gpu-installer:v2.2.1.

Um die verfügbaren Versionen für jede dieser Optionen anzuzeigen, führen Sie den Befehl GPU-Treiberversionen identifizieren

Installation überprüfen

Sie können auf Ihren VM-Instanzen mit Container-Optimized OS folgende Befehle ausführen, um die Installation der GPU-Treiber manuell zu prüfen: Die Ausgabe des Befehls zeigt die GPU-Geräteinformationen, z. B. Gerätestatus und Treiberversion.

# Make the driver installation path executable by re-mounting it.
sudo mount --bind /var/lib/nvidia /var/lib/nvidia
sudo mount -o remount,exec /var/lib/nvidia
/var/lib/nvidia/bin/nvidia-smi

Container für die Nutzung von GPUs konfigurieren

Nach der Installation der GPU-Treiber können Sie Container so konfigurieren, GPUs nutzen. Im folgenden Beispiel wird gezeigt, wie Sie einen CUDA ausführen. Anwendung in einem Docker-Container, der /dev/nvidia0 verwendet:

docker run \
  --volume /var/lib/nvidia/lib64:/usr/local/nvidia/lib64 \
  --volume /var/lib/nvidia/bin:/usr/local/nvidia/bin \
  --device /dev/nvidia0:/dev/nvidia0 \
  --device /dev/nvidia-uvm:/dev/nvidia-uvm \
  --device /dev/nvidiactl:/dev/nvidiactl \
  gcr.io/google_containers/cuda-vector-add:v0.1

Sie können Ihre Container über cloud-init ausführen, um anzugeben, Abhängigkeit zwischen der Treiberinstallation und Ihren Containern. sieh dir die Ende-zu-Ende: GPU-Anwendung unter Container-Optimized OS ausführen .

End-to-End: GPU-Anwendung auf Container-Optimized-OS ausführen

Im folgenden End-to-End-Beispiel wird gezeigt, wie Sie mithilfe von cloud-init Container-Optimized-OS-VM-Instanzen konfigurieren, die einen GPU-Anwendungscontainer myapp:latest bereitstellen, nachdem der GPU-Treiber installiert wurde:

#cloud-config

users:
- name: myuser
  uid: 2000

write_files:
  - path: /etc/systemd/system/install-gpu.service
    permissions: 0644
    owner: root
    content: |
      [Unit]
      Description=Install GPU drivers
      Wants=gcr-online.target docker.socket
      After=gcr-online.target docker.socket

      [Service]
      User=root
      Type=oneshot
      ExecStart=cos-extensions install gpu
      StandardOutput=journal+console
      StandardError=journal+console
  - path: /etc/systemd/system/myapp.service
    permissions: 0644
    owner: root
    content: |
      [Unit]
      Description=Run a myapp GPU application container
      Requires=install-gpu.service
      After=install-gpu.service

      [Service]
      User=root
      Type=oneshot
      RemainAfterExit=true
      ExecStart=/usr/bin/docker run --rm -u 2000 --name=myapp --device /dev/nvidia0:/dev/nvidia0 myapp:latest
      StandardOutput=journal+console
      StandardError=journal+console

runcmd:
  - systemctl daemon-reload
  - systemctl start install-gpu.service
  - systemctl start myapp.service

Informationen zu NVIDIA CUDA-X-Bibliotheken

CUDA® ist die NVIDIA-Plattform für paralleles Computing und das Programmiermodell für GPUs. Zur Verwendung von CUDA-Anwendungen müssen die Bibliotheken in dem von Ihnen verwendeten Image vorhanden sein. Sie haben folgende Möglichkeiten, die NVIDIA CUDA-X-Bibliotheken hinzuzufügen:

  • Verwenden Sie ein Image mit den vorinstallierten NVIDIA CUDA-X-Bibliotheken. Sie können beispielsweise Deep Learning Container von Google verwenden. In diesen Containern werden die wichtigsten Data-Science-Frameworks, die NVIDIA CUDA-X-Bibliotheken und die Tools vorinstalliert. Alternativ enthält das CUDA-Image von NVIDIA nur die NVIDIA CUDA-X-Bibliotheken.

  • Erstellen und verwenden Sie ein eigenes Image. Fügen Sie in diesem Fall /usr/local/cuda-XX.X/lib64 mit den NVIDIA CUDA-X-Bibliotheken und /usr/local/nvidia/lib64 mit den NVIDIA-Gerätetreibern in die Umgebungsvariable LD_LIBRARY_PATH ein. Der Name des Verzeichnisses hängt bei /usr/local/cuda-XX.X/lib64 von der Version des verwendeten Images ab. Zum Beispiel können sich NVIDIA CUDA-X-Bibliotheken und Dienstprogramme zur Fehlerbehebung in Docker-Containern unter /usr/local/cuda-11.0/lib64 bzw. /usr/local/nvidia/bin befinden.

Sicherheit

Wie andere Kernel-Module auf Container-Optimized OS sind GPU-Treiber kryptografisch verschlüsselt und werden durch Schlüssel verifiziert, die in den Container-Optimized OS-Kernel eingebunden sind. Im Gegensatz zu anderen Distributionen ist es bei Container-Optimized OS nicht möglich, dass Nutzer ihren Computerinhaberschlüssel (MOK) registrieren und damit benutzerdefinierte Kernel-Module signieren. Dadurch werden die Integrität des Kernels des Container-Optimized OS sichergestellt und die Angriffsoptionen reduziert.

Beschränkungen

Versionseinschränkungen des Container-Optimized OS

Nur das Container-Optimized OS LTS-Meilenstein-Release 85 und höher unterstützen das cos-extensions-Dienstprogramm, das im Abschnitt NVIDIA-GPU-Treiber installieren erwähnt wird. Verwenden Sie für frühere Meilenstein-Releases von Container-Optimized OS die Methode cos-gpu-installer um GPU-Treiber manuell zu installieren.

Einschränkungen für VM-Instanzen

VM-Instanzen mit GPUs unterliegen bestimmten Beschränkungen. Daher verhalten sie sich anders als andere Instanztypen. Weitere Informationen finden Sie auf der Compute Engine-Seite GPU-Einschränkungen.

Kontingent und Verfügbarkeit

GPUs sind in bestimmten Regionen und Zonen verfügbar. Berücksichtigen Sie also bei Ihrer GPU-Kontingent die Regionen, in denen Sie Ihre VM-Instanzen mit Container-Optimized-OS ausführen möchten.

Eine vollständige Liste der betreffenden Regionen und Zonen finden Sie unter GPUs in Compute Engine. Mit dem Google Cloud CLI können Sie auch GPUs aufrufen, die in Ihrer Zone verfügbar sind.

gcloud compute accelerator-types list

Preise

GPU-Preiseinformationen finden Sie auf der Seite Compute Engine-Preise.

Support

Jede Version des Container-Optimized-OS ist mindestens eine unterstützte NVIDIA GPU-Treiberversion. Das Container-Optimized-OS-Team erfüllt die unterstützten GPU-Treiber vor der Veröffentlichung mit der Version des Container-Optimized-OS, um sicherzustellen, dass sie kompatibel sind. Es werden gelegentlich neue Versionen der NVIDIA-GPU-Treiber bereitgestellt. Einige GPU-Treiberversionen sind für Container-Optimized OS nutzen können und der Qualifizierungszeitraum nicht garantiert ist.

Wenn das Container-Optimized OS-Team eine neue Version per Release-Meilenstein veröffentlicht, versuchen wir, die neueste GPU-Treiberversion im entsprechenden Treiberzweig zu unterstützen. Damit werden Sicherheitslücken behoben, die in GPU-Treibern festgestellt werden.

Wenn ein Kunde mit Container-Optimized-OS ein Problem feststellt, das sich auf die NVIDIA-GPU-Treiber bezieht, muss der Kunde direkt mit NVIDIA zusammenarbeiten. Wenn das Problem nicht treiberspezifisch ist, können Nutzer eine Anfrage beim Cloud Customer Care stellen.

Nächste Schritte