Package google.type



Represents a whole or partial calendar date, such as a birthday. The time of day and time zone are either specified elsewhere or are insignificant. The date is relative to the Gregorian Calendar. This can represent one of the following:

  • A full date, with non-zero year, month, and day values
  • A month and day value, with a zero year, such as an anniversary
  • A year on its own, with zero month and day values
  • A year and month value, with a zero day, such as a credit card expiration date

Related types are google.type.TimeOfDay and google.protobuf.Timestamp.



Year of the date. Must be from 1 to 9999, or 0 to specify a date without a year.



Month of a year. Must be from 1 to 12, or 0 to specify a year without a month and day.



Day of a month. Must be from 1 to 31 and valid for the year and month, or 0 to specify a year by itself or a year and month where the day isn't significant.


A representation of a decimal value, such as 2.5. Clients may convert values into language-native decimal formats, such as Java's [BigDecimal][] or Python's [decimal.Decimal][].

[BigDecimal]: [decimal.Decimal]:



The decimal value, as a string.

The string representation consists of an optional sign, + (U+002B) or - (U+002D), followed by a sequence of zero or more decimal digits ("the integer"), optionally followed by a fraction, optionally followed by an exponent.

The fraction consists of a decimal point followed by zero or more decimal digits. The string must contain at least one digit in either the integer or the fraction. The number formed by the sign, the integer and the fraction is referred to as the significand.

The exponent consists of the character e (U+0065) or E (U+0045) followed by one or more decimal digits.

Services should normalize decimal values before storing them by:

  • Removing an explicitly-provided + sign (+2.5 -> 2.5).
  • Replacing a zero-length integer value with 0 (.5 -> 0.5).
  • Coercing the exponent character to lower-case (2.5E8 -> 2.5e8).
  • Removing an explicitly-provided zero exponent (2.5e0 -> 2.5).

Services may perform additional normalization based on its own needs and the internal decimal implementation selected, such as shifting the decimal point and exponent value together (example: 2.5e-1 <-> 0.25). Additionally, services may preserve trailing zeroes in the fraction to indicate increased precision, but are not required to do so.

Note that only the . character is supported to divide the integer and the fraction; , should not be supported regardless of locale. Additionally, thousand separators should not be supported. If a service does support them, values must be normalized.

The ENBF grammar is:

DecimalString =
  [Sign] Significand [Exponent];

Sign = '+' | '-';

Significand =
  Digits ['.'] [Digits] | [Digits] '.' Digits;

Exponent = ('e' | 'E') [Sign] Digits;

Digits = { '0' | '1' | '2' | '3' | '4' | '5' | '6' | '7' | '8' | '9' };

Services should clearly document the range of supported values, the maximum supported precision (total number of digits), and, if applicable, the scale (number of digits after the decimal point), as well as how it behaves when receiving out-of-bounds values.

Services may choose to accept values passed as input even when the value has a higher precision or scale than the service supports, and should round the value to fit the supported scale. Alternatively, the service may error with 400 Bad Request (INVALID_ARGUMENT in gRPC) if precision would be lost.

Services should error with 400 Bad Request (INVALID_ARGUMENT in gRPC) if the service receives a value outside of the supported range.


Represents an amount of money with its currency type.



The three-letter currency code defined in ISO 4217.



The whole units of the amount. For example if currencyCode is "USD", then 1 unit is one US dollar.



Number of nano (10^-9) units of the amount. The value must be between -999,999,999 and +999,999,999 inclusive. If units is positive, nanos must be positive or zero. If units is zero, nanos can be positive, zero, or negative. If units is negative, nanos must be negative or zero. For example $-1.75 is represented as units=-1 and nanos=-750,000,000.


Represents a postal address, e.g. for postal delivery or payments addresses. Given a postal address, a postal service can deliver items to a premise, P.O. Box or similar. It is not intended to model geographical locations (roads, towns, mountains).

In typical usage an address would be created via user input or from importing existing data, depending on the type of process.

Advice on address input / editing: - Use an i18n-ready address widget such as - Users should not be presented with UI elements for input or editing of fields outside countries where that field is used.

For more guidance on how to use this schema, please see:



The schema revision of the PostalAddress. This must be set to 0, which is the latest revision.

All new revisions must be backward compatible with old revisions.



Required. CLDR region code of the country/region of the address. This is never inferred and it is up to the user to ensure the value is correct. See and for details. Example: "CH" for Switzerland.



Optional. BCP-47 language code of the contents of this address (if known). This is often the UI language of the input form or is expected to match one of the languages used in the address' country/region, or their transliterated equivalents. This can affect formatting in certain countries, but is not critical to the correctness of the data and will never affect any validation or other non-formatting related operations.

If this value is not known, it should be omitted (rather than specifying a possibly incorrect default).

Examples: "zh-Hant", "ja", "ja-Latn", "en".



Optional. Postal code of the address. Not all countries use or require postal codes to be present, but where they are used, they may trigger additional validation with other parts of the address (e.g. state/zip validation in the U.S.A.).



Optional. Additional, country-specific, sorting code. This is not used in most regions. Where it is used, the value is either a string like "CEDEX", optionally followed by a number (e.g. "CEDEX 7"), or just a number alone, representing the "sector code" (Jamaica), "delivery area indicator" (Malawi) or "post office indicator" (e.g. Côte d'Ivoire).



Optional. Highest administrative subdivision which is used for postal addresses of a country or region. For example, this can be a state, a province, an oblast, or a prefecture. Specifically, for Spain this is the province and not the autonomous community (e.g. "Barcelona" and not "Catalonia"). Many countries don't use an administrative area in postal addresses. E.g. in Switzerland this should be left unpopulated.



Optional. Generally refers to the city/town portion of the address. Examples: US city, IT comune, UK post town. In regions of the world where localities are not well defined or do not fit into this structure well, leave locality empty and use address_lines.



Optional. Sublocality of the address. For example, this can be neighborhoods, boroughs, districts.



Unstructured address lines describing the lower levels of an address.

Because values in address_lines do not have type information and may sometimes contain multiple values in a single field (e.g. "Austin, TX"), it is important that the line order is clear. The order of address lines should be "envelope order" for the country/region of the address. In places where this can vary (e.g. Japan), address_language is used to make it explicit (e.g. "ja" for large-to-small ordering and "ja-Latn" or "en" for small-to-large). This way, the most specific line of an address can be selected based on the language.

The minimum permitted structural representation of an address consists of a region_code with all remaining information placed in the address_lines. It would be possible to format such an address very approximately without geocoding, but no semantic reasoning could be made about any of the address components until it was at least partially resolved.

Creating an address only containing a region_code and address_lines, and then geocoding is the recommended way to handle completely unstructured addresses (as opposed to guessing which parts of the address should be localities or administrative areas).



Optional. The recipient at the address. This field may, under certain circumstances, contain multiline information. For example, it might contain "care of" information.



Optional. The name of the organization at the address.