Export assets to BigQuery

Export an asset inventory to BigQuery.

Explore further

For detailed documentation that includes this code sample, see the following:

Code sample

Go

To learn how to install and use the client library for Cloud Asset Inventory, see Cloud Asset Inventory client libraries.

To authenticate to Cloud Asset Inventory, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.


// Sample asset-quickstart exports assets to given bigquery table.
package main

import (
	"context"
	"fmt"
	"log"
	"os"
	"strings"

	asset "cloud.google.com/go/asset/apiv1"
	"cloud.google.com/go/asset/apiv1/assetpb"
)

func main() {
	ctx := context.Background()
	projectID := os.Getenv("GOOGLE_CLOUD_PROJECT")
	client, err := asset.NewClient(ctx)
	if err != nil {
		log.Fatalf("asset.NewClient: %v", err)
	}
	defer client.Close()
	datasetID := strings.Replace(fmt.Sprintf("%s-for-assets", projectID), "-", "_", -1)
	dataset := fmt.Sprintf("projects/%s/datasets/%s", projectID, datasetID)
	req := &assetpb.ExportAssetsRequest{
		Parent: fmt.Sprintf("projects/%s", projectID),
		OutputConfig: &assetpb.OutputConfig{
			Destination: &assetpb.OutputConfig_BigqueryDestination{
				BigqueryDestination: &assetpb.BigQueryDestination{
					Dataset: dataset,
					Table:   "test",
					Force:   true,
				},
			},
		},
	}
	op, err := client.ExportAssets(ctx, req)
	if err != nil {
		log.Fatalf("ExportAssets: %v", err)
	}
	resp, err := op.Wait(ctx)
	if err != nil {
		log.Fatalf("Wait: %v", err)
	}
	fmt.Print(resp)
}

Java

To learn how to install and use the client library for Cloud Asset Inventory, see Cloud Asset Inventory client libraries.

To authenticate to Cloud Asset Inventory, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

// Imports the Google Cloud client library

import com.google.cloud.ServiceOptions;
import com.google.cloud.asset.v1.AssetServiceClient;
import com.google.cloud.asset.v1.BigQueryDestination;
import com.google.cloud.asset.v1.ContentType;
import com.google.cloud.asset.v1.ExportAssetsRequest;
import com.google.cloud.asset.v1.ExportAssetsRequest.Builder;
import com.google.cloud.asset.v1.ExportAssetsResponse;
import com.google.cloud.asset.v1.OutputConfig;
import com.google.cloud.asset.v1.PartitionSpec;
import com.google.cloud.asset.v1.ProjectName;
import java.io.IOException;
import java.util.Arrays;
import java.util.concurrent.ExecutionException;

public class ExportAssetsBigqueryExample {

  // Use the default project Id.
  private static final String projectId = ServiceOptions.getDefaultProjectId();

  /** 
   * Export assets to BigQuery for a project.

   * @param bigqueryDataset which dataset the results will be exported to
   * @param bigqueryTable which table the results will be exported to
   * @param contentType determines the schema for the table
   * @param assetTypes a list of asset types to export. if empty, export all.
   * @param isPerType separate BigQuery tables for each resource type
   */
  public static void exportBigQuery(String bigqueryDataset, String bigqueryTable,
      ContentType contentType, String[] assetTypes, boolean isPerType)
      throws IOException, IllegalArgumentException, InterruptedException, ExecutionException {
    try (AssetServiceClient client = AssetServiceClient.create()) {
      ProjectName parent = ProjectName.of(projectId);
      OutputConfig outputConfig;
      // Outputs to per-type BigQuery table.
      if (isPerType) {
        outputConfig =
            OutputConfig.newBuilder()
                .setBigqueryDestination(
                    BigQueryDestination.newBuilder()
                        .setDataset(bigqueryDataset)
                        .setTable(bigqueryTable)
                        .setForce(true)
                        .setSeparateTablesPerAssetType(true)
                        .setPartitionSpec(
                            PartitionSpec.newBuilder()
                                .setPartitionKey(PartitionSpec.PartitionKey.READ_TIME)
                                .build())
                        .build())
                .build();
      } else {
        outputConfig =
            OutputConfig.newBuilder()
                .setBigqueryDestination(
                    BigQueryDestination.newBuilder()
                        .setDataset(bigqueryDataset)
                        .setTable(bigqueryTable)
                        .setForce(true)
                        .build())
                .build();
      }
      Builder exportAssetsRequestBuilder = ExportAssetsRequest.newBuilder()
          .setParent(parent.toString()).setContentType(contentType).setOutputConfig(outputConfig);
      if (assetTypes.length > 0) {
        exportAssetsRequestBuilder.addAllAssetTypes(Arrays.asList(assetTypes));
      }
      ExportAssetsRequest request = exportAssetsRequestBuilder.build();
      ExportAssetsResponse response = client.exportAssetsAsync(request).get();
      System.out.println(response);
    }
  }
}

Node.js

To learn how to install and use the client library for Cloud Asset Inventory, see Cloud Asset Inventory client libraries.

To authenticate to Cloud Asset Inventory, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const dataSet = 'projects/project_id/datasets/dataset_id';
// const table = 'mytable';

const {AssetServiceClient} = require('@google-cloud/asset');
const client = new AssetServiceClient();

async function exportAssetsBigquery() {
  const projectId = await client.getProjectId();
  const projectResource = client.projectPath(projectId);
  const dataset = dataSet;

  const request = {
    parent: projectResource,
    outputConfig: {
      bigqueryDestination: {
        dataset: `projects/${projectId}/${dataset}`,
        table: table,
        force: true,
      },
    },
  };

  // Handle the operation using the promise pattern.
  const [operation] = await client.exportAssets(request);

  // Operation#promise starts polling for the completion of the operation.
  const [result] = await operation.promise();

  // Do things with with the response.
  console.log(result);
}

exportAssetsBigquery();

Python

To learn how to install and use the client library for Cloud Asset Inventory, see Cloud Asset Inventory client libraries.

To authenticate to Cloud Asset Inventory, set up Application Default Credentials. For more information, see Set up authentication for a local development environment.

from google.cloud import asset_v1

# TODO project_id = 'Your Google Cloud Project ID'
# TODO dataset = 'Your BigQuery dataset path'
# TODO table = 'Your BigQuery table name'
# TODO content_type ="Content type to export"

client = asset_v1.AssetServiceClient()
parent = f"projects/{project_id}"
output_config = asset_v1.OutputConfig()
output_config.bigquery_destination.dataset = dataset
output_config.bigquery_destination.table = table
output_config.bigquery_destination.force = True
response = client.export_assets(
    request={
        "parent": parent,
        "content_type": content_type,
        "output_config": output_config,
    }
)
print(response.result())

What's next

To search and filter code samples for other Google Cloud products, see the Google Cloud sample browser.