Consulte os conetores suportados para a solução Application Integration.

Use a tarefa do Vertex AI para incorporar a IA gen

Esta integração de exemplo contém um fluxo a ser usado como uma subintegração para interagir com os Google Cloud modelos da Vertex AI. Antes de usar o exemplo de código seguinte, certifique-se de que todos os pré-requisitos são cumpridos.

Exemplo de código

{
  "triggerConfigs": [
    {
      "label": "API Trigger",
      "startTasks": [
        {
          "taskId": "1"
        }
      ],
      "properties": {
        "Trigger name": "vertex-ai-task_API_1"
      },
      "triggerType": "API",
      "triggerNumber": "1",
      "triggerId": "api_trigger/vertex-ai-task_API_1",
      "description": "As inputs, we are only adding TextPrompt and ModelId. You can set Model ID for different Google models, such as text-bison, chat-bison, etc.",
      "position": {
        "x": -210
      }
    }
  ],
  "taskConfigs": [
    {
      "task": "Vertex AI - Predict",
      "taskId": "4",
      "parameters": {
        "request": {
          "key": "request",
          "value": {
            "stringValue": "$`Task_4_request`$"
          }
        },
        "projectsId": {
          "key": "projectsId",
          "value": {
            "stringValue": "$ProjectId$"
          }
        },
        "endpoint": {
          "key": "endpoint",
          "value": {
            "stringValue": "$endpoint$"
          }
        },
        "locationsId": {
          "key": "locationsId",
          "value": {
            "stringValue": "$Region$"
          }
        },
        "response": {
          "key": "response",
          "value": {
            "stringArray": {
              "stringValues": [
                "$`Task_4_response`$"
              ]
            }
          }
        },
        "taskTemplateId": {
          "key": "taskTemplateId",
          "value": {
            "stringValue": "2b5513a2-f3f4-4ac6-918e-8ea55b53cbb8"
          }
        }
      },
      "nextTasks": [
        {
          "taskId": "3"
        }
      ],
      "taskExecutionStrategy": "WHEN_ALL_SUCCEED",
      "displayName": "Vertex AI - Predict (Preview)",
      "description": "This is the actual Vertex AI API call with the variables we\u0027ve previously setup. Notice that under authentication, you need to have a Service Account with Vertex AI Predict IAM permissions.",
      "taskTemplate": "Vertex AI - Predict",
      "externalTaskType": "NORMAL_TASK",
      "position": {
        "x": -208,
        "y": 256
      }
    },
    {
      "task": "FieldMappingTask",
      "taskId": "1",
      "parameters": {
        "FieldMappingConfigTaskParameterKey": {
          "key": "FieldMappingConfigTaskParameterKey",
          "value": {
            "jsonValue": "{\n  \"@type\": \"type.googleapis.com/enterprise.crm.eventbus.proto.FieldMappingConfig\",\n  \"mappedFields\": [{\n    \"inputField\": {\n      \"fieldType\": \"STRING_VALUE\",\n      \"transformExpression\": {\n        \"initialValue\": {\n          \"baseFunction\": {\n            \"functionType\": {\n              \"baseFunction\": {\n                \"functionName\": \"GET_PROJECT_ID\"\n              }\n            }\n          }\n        }\n      }\n    },\n    \"outputField\": {\n      \"referenceKey\": \"$ProjectId$\",\n      \"fieldType\": \"STRING_VALUE\",\n      \"cardinality\": \"OPTIONAL\"\n    }\n  }, {\n    \"inputField\": {\n      \"fieldType\": \"STRING_VALUE\",\n      \"transformExpression\": {\n        \"initialValue\": {\n          \"baseFunction\": {\n            \"functionType\": {\n              \"baseFunction\": {\n                \"functionName\": \"GET_REGION\"\n              }\n            }\n          }\n        }\n      }\n    },\n    \"outputField\": {\n      \"referenceKey\": \"$Region$\",\n      \"fieldType\": \"STRING_VALUE\",\n      \"cardinality\": \"OPTIONAL\"\n    }\n  }, {\n    \"inputField\": {\n      \"fieldType\": \"STRING_VALUE\",\n      \"transformExpression\": {\n        \"initialValue\": {\n          \"referenceValue\": \"$endpoint$\"\n        },\n        \"transformationFunctions\": [{\n          \"functionType\": {\n            \"stringFunction\": {\n              \"functionName\": \"CONCAT\"\n            }\n          },\n          \"parameters\": [{\n            \"initialValue\": {\n              \"referenceValue\": \"$ModelId$\"\n            }\n          }]\n        }]\n      }\n    },\n    \"outputField\": {\n      \"referenceKey\": \"$endpoint$\",\n      \"fieldType\": \"STRING_VALUE\",\n      \"cardinality\": \"OPTIONAL\"\n    }\n  }, {\n    \"inputField\": {\n      \"fieldType\": \"JSON_VALUE\",\n      \"transformExpression\": {\n        \"initialValue\": {\n          \"referenceValue\": \"$PalmPromptRequest$\"\n        },\n        \"transformationFunctions\": [{\n          \"functionType\": {\n            \"jsonFunction\": {\n              \"functionName\": \"RESOLVE_TEMPLATE\"\n            }\n          }\n        }]\n      }\n    },\n    \"outputField\": {\n      \"referenceKey\": \"$`Task_4_request`$\",\n      \"fieldType\": \"JSON_VALUE\",\n      \"cardinality\": \"OPTIONAL\"\n    }\n  }]\n}"
          }
        }
      },
      "nextTasks": [
        {
          "taskId": "4"
        }
      ],
      "taskExecutionStrategy": "WHEN_ALL_SUCCEED",
      "displayName": "Set Prompt Parameters",
      "description": "In here, we are setting the required variables for the Vertex AI task. The actual payload is set using the resolve_template function from a pre-defined Local Variable called PalmPromptRequest.",
      "externalTaskType": "NORMAL_TASK",
      "position": {
        "x": -210,
        "y": 126
      }
    },
    {
      "task": "FieldMappingTask",
      "taskId": "3",
      "parameters": {
        "FieldMappingConfigTaskParameterKey": {
          "key": "FieldMappingConfigTaskParameterKey",
          "value": {
            "jsonValue": "{\n  \"@type\": \"type.googleapis.com/enterprise.crm.eventbus.proto.FieldMappingConfig\",\n  \"mappedFields\": [{\n    \"inputField\": {\n      \"fieldType\": \"JSON_VALUE\",\n      \"transformExpression\": {\n        \"initialValue\": {\n          \"referenceValue\": \"$`Task_4_response`.predictions$\"\n        },\n        \"transformationFunctions\": [{\n          \"functionType\": {\n            \"jsonFunction\": {\n              \"functionName\": \"GET_ELEMENT\"\n            }\n          },\n          \"parameters\": [{\n            \"initialValue\": {\n              \"literalValue\": {\n                \"intValue\": \"0\"\n              }\n            }\n          }]\n        }, {\n          \"functionType\": {\n            \"jsonFunction\": {\n              \"functionName\": \"GET_PROPERTY\"\n            }\n          },\n          \"parameters\": [{\n            \"initialValue\": {\n              \"literalValue\": {\n                \"stringValue\": \"content\"\n              }\n            }\n          }]\n        }]\n      }\n    },\n    \"outputField\": {\n      \"referenceKey\": \"$Content$\",\n      \"fieldType\": \"STRING_VALUE\",\n      \"cardinality\": \"OPTIONAL\"\n    }\n  }]\n}"
          }
        }
      },
      "taskExecutionStrategy": "WHEN_ALL_SUCCEED",
      "displayName": "Map Prompt Response",
      "description": "Finally, we are mapping just the content of the Vertex AI task output as the final integration Output. ",
      "externalTaskType": "NORMAL_TASK",
      "position": {
        "x": -210,
        "y": 378
      }
    }
  ],
  "integrationParameters": [
    {
      "key": "TextPrompt",
      "dataType": "STRING_VALUE",
      "displayName": "TextPrompt",
      "inputOutputType": "IN"
    },
    {
      "key": "Region",
      "dataType": "STRING_VALUE",
      "defaultValue": {
        "stringValue": "us-central1"
      },
      "displayName": "Region"
    },
    {
      "key": "ProjectId",
      "dataType": "STRING_VALUE",
      "displayName": "ProjectId"
    },
    {
      "key": "`Task_4_request`",
      "dataType": "JSON_VALUE",
      "defaultValue": {
        "jsonValue": "{\n}"
      },
      "displayName": "`Task_4_request`",
      "isTransient": true,
      "producer": "1_4",
      "jsonSchema": "{\n  \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n  \"type\": \"object\",\n  \"properties\": {\n    \"instances\": {\n      \"type\": \"array\"\n    },\n    \"parameters\": {\n      \"type\": \"object\"\n    }\n  }\n}"
    },
    {
      "key": "`Task_4_response`",
      "dataType": "JSON_VALUE",
      "displayName": "`Task_4_response`",
      "isTransient": true,
      "producer": "1_4",
      "jsonSchema": "{\n  \"$schema\": \"http://json-schema.org/draft-07/schema#\",\n  \"type\": \"object\",\n  \"properties\": {\n    \"deployedModelId\": {\n      \"type\": \"string\"\n    },\n    \"modelVersionId\": {\n      \"type\": \"string\"\n    },\n    \"model\": {\n      \"type\": \"string\"\n    },\n    \"predictions\": {\n      \"type\": \"array\"\n    },\n    \"modelDisplayName\": {\n      \"type\": \"string\"\n    }\n  }\n}"
    },
    {
      "key": "ModelId",
      "dataType": "STRING_VALUE",
      "defaultValue": {
        "stringValue": "text-bison@001"
      },
      "displayName": "ModelId",
      "inputOutputType": "IN"
    },
    {
      "key": "endpoint",
      "dataType": "STRING_VALUE",
      "defaultValue": {
        "stringValue": "publishers/google/models/"
      },
      "displayName": "endpoint"
    },
    {
      "key": "PalmPromptRequest",
      "dataType": "JSON_VALUE",
      "defaultValue": {
        "jsonValue": "{\n  \"instances\": [{\n    \"prompt\": \"$TextPrompt$\"\n  }],\n  \"parameters\": {\n    \"temperature\": 0.2,\n    \"maxOutputTokens\": 768.0,\n    \"topP\": 0.8,\n    \"topK\": 40.0\n  }\n}"
      },
      "displayName": "PalmPromptRequest",
      "jsonSchema": "{\n  \"$schema\": \"http://json-schema.org/draft-04/schema#\",\n  \"type\": \"object\",\n  \"properties\": {\n    \"instances\": {\n      \"type\": \"array\",\n      \"items\": {\n        \"type\": \"object\",\n        \"properties\": {\n          \"prompt\": {\n            \"type\": \"string\"\n          }\n        }\n      }\n    },\n    \"parameters\": {\n      \"type\": \"object\",\n      \"properties\": {\n        \"topK\": {\n          \"type\": \"number\"\n        },\n        \"temperature\": {\n          \"type\": \"number\"\n        },\n        \"maxOutputTokens\": {\n          \"type\": \"number\"\n        },\n        \"topP\": {\n          \"type\": \"number\"\n        }\n      }\n    }\n  }\n}"
    },
    {
      "key": "Content",
      "dataType": "STRING_VALUE",
      "displayName": "Content",
      "inputOutputType": "OUT"
    }
  ]
}

Fluxo de integração de amostra

A imagem seguinte mostra um exemplo de esquema do editor de integração para este exemplo de código de integração.

Imagem que mostra o fluxo de integração de amostra Imagem que mostra o fluxo de integração de amostra

Carregue e execute a integração de exemplo

Para carregar e executar a integração de exemplo, siga estes passos:

  1. Guarde o exemplo de integração como um ficheiro .json no seu sistema.
  2. Na Google Cloud Console, aceda à página Integração de aplicações.

    Aceda à solução Application Integration

  3. Clique em Integrações no menu de navegação do lado esquerdo para abrir a página Integrações.
  4. Selecione uma integração existente ou crie uma nova clicando em Criar integração.

    Se estiver a criar uma nova integração:

    1. Introduza um nome e uma descrição na caixa de diálogo Criar integração.
    2. Selecione uma região para a integração.
    3. Selecione uma conta de serviço para a integração. Pode alterar ou atualizar os detalhes da conta de serviço de uma integração em qualquer altura no painel Resumo da integração na barra de ferramentas de integração.
    4. Clique em Criar.

    Esta ação abre a integração no editor de integração.

  5. No editor de integração, clique em Menu de carregamento/transferência e, de seguida, selecione Carregar integração.
  6. Na caixa de diálogo do explorador de ficheiros, selecione o ficheiro que guardou no passo 1 e, de seguida, clique em Abrir.

    É criada uma nova versão da integração com o ficheiro carregado.

  7. No editor de integração, clique em Testar.
  8. Clique em Testar integração. Isto executa a integração e apresenta o resultado da execução no painel Testar integração.