Neste tópico, descrevemos como configurar métricas definidas pelo usuário para escalonamento automático horizontal de pods (HPA) no GKE em VMware.
Implantar o Prometheus e o Metrics Adapter
Nesta seção, você implantará o Prometheus para extrair métricas definidas pelo usuário e o prometheus-adapter para atender à API Kubernetes Custom Metrics com o Prometheus como no back-end.
Salve os seguintes manifestos de implantação em um arquivo chamado custom-metrics-adapter.yaml
.
Conteúdo do arquivo de manifesto para o Prometheus e o Metrics Adapter
# Copyright 2018 Google Inc # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. apiVersion: v1 kind: ServiceAccount metadata: name: stackdriver-prometheus namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: stackdriver-prometheus namespace: kube-system rules: - apiGroups: - "" resources: - nodes - services - endpoints - pods verbs: - get - list - watch --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: stackdriver-prometheus namespace: kube-system roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: stackdriver-prometheus subjects: - kind: ServiceAccount name: stackdriver-prometheus namespace: kube-system --- apiVersion: v1 kind: Service metadata: name: stackdriver-prometheus-app namespace: kube-system labels: app: stackdriver-prometheus-app spec: clusterIP: "None" ports: - name: http port: 9090 protocol: TCP targetPort: 9090 sessionAffinity: ClientIP selector: app: stackdriver-prometheus-app --- apiVersion: apps/v1 kind: Deployment metadata: name: stackdriver-prometheus-app namespace: kube-system labels: app: stackdriver-prometheus-app spec: replicas: 1 selector: matchLabels: app: stackdriver-prometheus-app template: metadata: labels: app: stackdriver-prometheus-app spec: serviceAccount: stackdriver-prometheus containers: - name: prometheus-server image: prom/prometheus:v2.45.0 args: - "--config.file=/etc/prometheus/config/prometheus.yaml" - "--storage.tsdb.path=/data" - "--storage.tsdb.retention.time=2h" ports: - name: prometheus containerPort: 9090 readinessProbe: httpGet: path: /-/ready port: 9090 periodSeconds: 5 timeoutSeconds: 3 # Allow up to 10m on startup for data recovery failureThreshold: 120 livenessProbe: httpGet: path: /-/healthy port: 9090 periodSeconds: 5 timeoutSeconds: 3 failureThreshold: 6 resources: requests: cpu: 250m memory: 500Mi volumeMounts: - name: config-volume mountPath: /etc/prometheus/config - name: stackdriver-prometheus-app-data mountPath: /data volumes: - name: config-volume configMap: name: stackdriver-prometheus-app - name: stackdriver-prometheus-app-data emptyDir: {} terminationGracePeriodSeconds: 300 nodeSelector: kubernetes.io/os: linux --- apiVersion: v1 data: prometheus.yaml: | global: scrape_interval: 1m rule_files: - /etc/config/rules.yaml - /etc/config/alerts.yaml scrape_configs: - job_name: prometheus-io-endpoints kubernetes_sd_configs: - role: endpoints relabel_configs: - action: keep regex: true source_labels: - __meta_kubernetes_service_annotation_prometheus_io_scrape - action: replace regex: (.+) source_labels: - __meta_kubernetes_service_annotation_prometheus_io_path target_label: __metrics_path__ - action: replace regex: (https?) source_labels: - __meta_kubernetes_service_annotation_prometheus_io_scheme target_label: __scheme__ - action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 source_labels: - __address__ - __meta_kubernetes_service_annotation_prometheus_io_port target_label: __address__ - action: replace source_labels: - __meta_kubernetes_namespace target_label: namespace - action: replace source_labels: - __meta_kubernetes_pod_name target_label: pod - action: keep regex: (.+) source_labels: - __meta_kubernetes_endpoint_port_name - job_name: prometheus-io-services kubernetes_sd_configs: - role: service metrics_path: /probe params: module: - http_2xx relabel_configs: - action: replace source_labels: - __address__ target_label: __param_target - action: replace replacement: blackbox target_label: __address__ - action: keep regex: true source_labels: - __meta_kubernetes_service_annotation_prometheus_io_probe - action: replace source_labels: - __meta_kubernetes_namespace target_label: namespace - action: replace source_labels: - __meta_kubernetes_pod_name target_label: pod - job_name: prometheus-io-pods kubernetes_sd_configs: - role: pod relabel_configs: - action: keep regex: true source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_scrape - action: replace regex: (.+) source_labels: - __meta_kubernetes_pod_annotation_prometheus_io_path target_label: __metrics_path__ - action: replace regex: ([^:]+)(?::\d+)?;(\d+) replacement: $1:$2 source_labels: - __address__ - __meta_kubernetes_pod_annotation_prometheus_io_port target_label: __address__ - action: replace source_labels: - __meta_kubernetes_namespace target_label: namespace - action: replace source_labels: - __meta_kubernetes_pod_name target_label: pod kind: ConfigMap metadata: name: stackdriver-prometheus-app namespace: kube-system --- # The main section of custom metrics adapter. kind: ServiceAccount apiVersion: v1 metadata: name: custom-metrics-apiserver namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: custom-metrics:system:auth-delegator roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: system:auth-delegator subjects: - kind: ServiceAccount name: custom-metrics-apiserver namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: custom-metrics-server-resources rules: - apiGroups: - custom.metrics.k8s.io resources: ["*"] verbs: ["*"] --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRole metadata: name: custom-metrics-resource-reader rules: - apiGroups: - "" resources: - nodes - namespaces - pods - services verbs: - get - watch - list --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: custom-metrics-resource-reader roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: custom-metrics-resource-reader subjects: - kind: ServiceAccount name: custom-metrics-apiserver namespace: kube-system --- apiVersion: rbac.authorization.k8s.io/v1 kind: RoleBinding metadata: name: custom-metrics-auth-reader namespace: kube-system roleRef: apiGroup: rbac.authorization.k8s.io kind: Role name: extension-apiserver-authentication-reader subjects: - kind: ServiceAccount name: custom-metrics-apiserver namespace: kube-system --- apiVersion: v1 kind: ConfigMap metadata: name: adapter-config namespace: kube-system data: config.yaml: | rules: default: false # fliter all metrics - seriesQuery: '{pod=~".+"}' seriesFilters: [] resources: # resource name is mapped as it is. ex. namespace -> namespace template: <<.Resource>> name: matches: ^(.*)$ as: "" # Aggregate metric on resource level metricsQuery: sum(<<.Series>>{<<.LabelMatchers>>}) by (<<.GroupBy>>) --- apiVersion: apps/v1 kind: Deployment metadata: labels: app: custom-metrics-apiserver name: custom-metrics-apiserver namespace: kube-system spec: replicas: 1 selector: matchLabels: app: custom-metrics-apiserver template: metadata: labels: app: custom-metrics-apiserver name: custom-metrics-apiserver spec: serviceAccountName: custom-metrics-apiserver containers: - name: custom-metrics-apiserver resources: requests: cpu: 15m memory: 20Mi limits: cpu: 100m memory: 150Mi image: registry.k8s.io/prometheus-adapter/prometheus-adapter:v0.11.0 args: - /adapter - --cert-dir=/var/run/serving-cert - --secure-port=6443 - --prometheus-url=http://stackdriver-prometheus-app.kube-system.svc:9090/ - --metrics-relist-interval=1m - --config=/etc/adapter/config.yaml ports: - containerPort: 6443 volumeMounts: - name: serving-cert mountPath: /var/run/serving-cert - mountPath: /etc/adapter/ name: config readOnly: true nodeSelector: kubernetes.io/os: linux volumes: - name: serving-cert emptyDir: medium: Memory - name: config configMap: name: adapter-config --- apiVersion: v1 kind: Service metadata: name: custom-metrics-apiserver namespace: kube-system spec: ports: - port: 443 targetPort: 6443 selector: app: custom-metrics-apiserver --- apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: name: v1beta1.custom.metrics.k8s.io spec: service: name: custom-metrics-apiserver namespace: kube-system group: custom.metrics.k8s.io version: v1beta1 insecureSkipTLSVerify: true groupPriorityMinimum: 100 versionPriority: 100 --- apiVersion: apiregistration.k8s.io/v1 kind: APIService metadata: name: v1beta2.custom.metrics.k8s.io spec: service: name: custom-metrics-apiserver namespace: kube-system group: custom.metrics.k8s.io version: v1beta2 insecureSkipTLSVerify: true groupPriorityMinimum: 100 versionPriority: 100 --- apiVersion: rbac.authorization.k8s.io/v1 kind: ClusterRoleBinding metadata: name: hpa-controller-custom-metrics roleRef: apiGroup: rbac.authorization.k8s.io kind: ClusterRole name: custom-metrics-server-resources subjects: - kind: ServiceAccount name: horizontal-pod-autoscaler namespace: kube-system
Crie a implantação e o serviço:
kubectl --kubeconfig USER_CLUSTER_KUBECONFIG apply -f custom-metrics-adapter.yaml
A próxima etapa é anotar o aplicativo do usuário para a coleta de métricas.
Anotar um aplicativo de usuário para coletar métricas
Para anotar um aplicativo de usuário a ser extraído e os registros enviados ao Cloud Monitoring, adicione annotations
correspondentes aos metadados do serviço, pod e endpoints.
metadata: name: "example-monitoring" namespace: "default" annotations: prometheus.io/scrape: "true" prometheus.io/path: "" - Overriding metrics path (default "/metrics")
Implantar um aplicativo de usuário de amostra
Nesta seção, você implantará um aplicativo de amostra com registros e métricas compatíveis com o Prometheus.
Salve os seguintes manifestos de Serviço e Implantação em um arquivo chamado
my-app.yaml
. Observe que o Serviço tem a anotaçãoprometheus.io/scrape: "true"
:kind: Service apiVersion: v1 metadata: name: "example-monitoring" namespace: "default" annotations: prometheus.io/scrape: "true" spec: selector: app: "example-monitoring" ports: - name: http port: 9090 --- apiVersion: apps/v1 kind: Deployment metadata: name: "example-monitoring" namespace: "default" labels: app: "example-monitoring" spec: replicas: 1 selector: matchLabels: app: "example-monitoring" template: metadata: labels: app: "example-monitoring" spec: containers: - image: gcr.io/google-samples/prometheus-dummy-exporter:v0.2.0 name: prometheus-example-exporter command: - ./prometheus-dummy-exporter args: - --metric-name=example_monitoring_up - --metric-value=1 - --port=9090 resources: requests: cpu: 100m
Crie a implantação e o serviço:
kubectl --kubeconfig USER_CLUSTER_KUBECONFIG apply -f my-app.yaml
Usar as métricas personalizadas no HPA
Implante o objeto do HPA para usar a métrica exposta na etapa anterior. Saiba mais sobre os diversos tipos de métricas personalizadas em Como fazer escalonamento automático em métricas diversas e personalizadas.
apiVersion: autoscaling/v2 kind: HorizontalPodAutoscaler metadata: name: example-monitoring-hpa namespace: default spec: scaleTargetRef: apiVersion: apps/v1 kind: Deployment name: example-monitoring minReplicas: 1 maxReplicas: 5 metrics: - type: Pods pods: metric: name: example_monitoring_up target: type: AverageValue averageValue: 20
A métrica do tipo pods tem um seletor de métricas padrão para os rótulos dos pods de destino, e é assim que o kube-controller-manager funciona. Neste exemplo, você consulta a métrica example_monitoring_up com um seletor de
{matchLabels: {app: example-monitoring}}
, porque eles estão disponíveis nos pods de destino. Qualquer outro seletor especificado será adicionado à lista. Para evitar o seletor padrão, remova todos os rótulos do pod de destino ou use a métrica "Tipo de objeto".
Verificar se as métricas do aplicativo definidas pelo usuário são usadas pelo HPA
Verifique se as métricas do aplicativo definidas pelo usuário são usadas pelo HPA:
kubectl --kubeconfig=USER_CLUSTER_KUBECONFIG describe hpa example-monitoring-hpa
A saída será semelhante ao seguinte:
Name: example-monitoring-hpa Namespace: default Labels:Annotations: autoscaling.alpha.kubernetes.io/conditions: [{"type":"AbleToScale","status":"True","lastTransitionTime":"2023-08-23T22:07:24Z","reason":"ReadyForNewScale","message":"recommended size... autoscaling.alpha.kubernetes.io/current-metrics: [{"type":"Pods","pods":{"metricName":"example_monitoring_up","currentAverageValue":"1"}}] autoscaling.alpha.kubernetes.io/metrics: [{"type":"Pods","pods":{"metricName":"example_monitoring_up","targetAverageValue":"20"}}] CreationTimestamp: Wed, 23 Aug 2023 22:07:09 +0000 Reference: Deployment/example-monitoring Min replicas: 1 Max replicas: 5 Deployment pods: 1 current / 1 desired
Custos
O uso de métricas personalizadas para o HPA não gera cobranças extras do Cloud Monitoring. Os pods para ativar métricas personalizadas consomem CPU e memória adicionais com base na quantidade de métricas coletadas.