Activer la journalisation et la surveillance des applications

Cette page explique comment configurer un cluster pour les clusters Anthos sur solution Bare Metal afin que les journaux personnalisés et les métriques des applications utilisateur soient envoyés à Cloud Logging, Cloud Monitoring et Managed Service pour Prometheus.

Activer Managed Service pour Prometheus

La configuration de Managed Service pour Prometheus est spécifiée dans un objet Stackdriver nommé stackdriver. Pour en savoir plus, y compris sur les bonnes pratiques et le dépannage, consultez la documentation sur Managed Service pour Prometheus.

Pour configurer l'objet stackdriver afin d'activer Google Cloud Managed Service pour Prometheus, procédez comme suit :

  1. Ouvrez l'objet Stackdriver pour le modifier :

    kubectl --kubeconfig=CLUSTER_KUBECONFIG \
        --namespace kube-system edit stackdriver stackdriver
    

    Remplacez CLUSTER_KUBECONFIG par le chemin d'accès du fichier kubeconfig de votre cluster.

  2. Sous spec, définissez enableGMPForApplications sur true :

    apiVersion: addons.gke.io/v1alpha1
    kind: Stackdriver
    metadata:
      name: stackdriver
      namespace: kube-system
    spec:
      projectID: ...
      clusterName: ...
      clusterLocation: ...
      proxyConfigSecretName: ...
      enableGMPForApplications: true
      enableVPC: ...
      optimizedMetrics: true
    
  3. Enregistrez et fermez le fichier modifié.

    Les composants Prometheus gérés par Google démarrent automatiquement dans le cluster dans l'espace de noms gmp-system.

  4. Vérifiez les composants Prometheus gérés par Google :

    kubectl --kubeconfig=CLUSTER_KUBECONFIG --namespace gmp-system get pods
    

    La sortie de la commande ressemble à ceci :

    NAME                              READY   STATUS    RESTARTS        AGE
    collector-abcde                   2/2     Running   1 (5d18h ago)   5d18h
    collector-fghij                   2/2     Running   1 (5d18h ago)   5d18h
    collector-klmno                   2/2     Running   1 (5d18h ago)   5d18h
    gmp-operator-68d49656fc-abcde     1/1     Running   0               5d18h
    rule-evaluator-7c686485fc-fghij   2/2     Running   1 (5d18h ago)   5d18h
    

Managed Service pour Prometheus est compatible avec l'évaluation des règles et les alertes. Pour configurer l'évaluation des règles, consultez la page Évaluation des règles.

Exécuter un exemple d'application

Le service géré fournit un fichier manifeste pour un exemple d'application,prom-example qui émet des métriques Prometheus sur le port metrics. L'application utilise trois instances dupliquées.

Pour déployer l'application, procédez comme suit :

  1. Créez l'espace de noms gmp-test pour les ressources que vous créez dans le cadre de l'exemple d'application :

    kubectl --kubeconfig=CLUSTER_KUBECONFIG create ns gmp-test
    
  2. Appliquez le fichier manifeste d'application à l'aide de la commande suivante :

    kubectl -n gmp-test apply \
        -f https://raw.githubusercontent.com/GoogleCloudPlatform/prometheus-engine/v0.4.1/examples/example-app.yaml
    

Configurer une ressource PodMonitoring

Dans cette section, vous allez configurer une ressource personnalisée PodMonitoring pour capturer les données de métriques émises par l'exemple d'application et les envoyer à Managed Service pour Prometheus. La ressource personnalisée PodMonitoring utilise le scraping de cible. Dans ce cas, les agents de collecteur scrapent le point de terminaison /metrics vers lequel l'exemple d'application émet des données.

Une ressource personnalisée PodMonitoring scrape uniquement les cibles de l'espace de noms dans lequel elle est déployée. Pour scraper des cibles dans plusieurs espaces de noms, déployez la même ressource personnalisée PodMonitoring dans chaque espace de noms. Vous pouvez vérifier que la ressource PodMonitoring est installée dans l'espace de noms prévu en exécutant la commande suivante :

kubectl --kubeconfig CLUSTER_KUBECONFIG get podmonitoring -A

Pour obtenir une documentation de référence sur toutes les ressources personnalisées Managed Service pour Prometheus, consultez la documentation prometheus-engine/doc/api reference.

Le fichier manifeste suivant définit une ressource PodMonitoring, prom-example, dans l'espace de noms gmp-test. La ressource trouve tous les pods de l'espace de noms qui portent le libellé app avec la valeur prom-example. Les pods correspondants sont détectés sur un port nommé metrics, toutes les 30 secondes, sur le chemin HTTP /metrics.

apiVersion: monitoring.googleapis.com/v1
kind: PodMonitoring
metadata:
  name: prom-example
spec:
  selector:
    matchLabels:
      app: prom-example
  endpoints:
  - port: metrics
    interval: 30s

Pour appliquer cette ressource, exécutez la commande suivante :

kubectl --kubeconfig CLUSTER_KUBECONFIG -n gmp-test apply \
    -f https://raw.githubusercontent.com/GoogleCloudPlatform/prometheus-engine/v0.4.1/examples/pod-monitoring.yaml

Managed Service pour Prometheus récupère désormais les pods correspondants.

Données des métriques de requêtes

Le moyen le plus simple de vérifier que vos données Prometheus sont exportées consiste à utiliser des requêtes PromQL dans l'explorateur de métriques de la console Google Cloud.

Pour exécuter une requête PromQL, procédez comme suit:

  1. Dans la console Google Cloud, accédez à la page Surveillance ou cliquez sur le bouton suivant :

    Accéder à Monitoring

  2. Dans le volet de navigation, sélectionnez  Explorateur de métriques.

  3. Utilisez le langage Prometheus Query Language (PromQL) pour spécifier les données à afficher sur le graphique:

    1. Dans la barre d'outils du volet Sélectionner une métrique, sélectionnez Éditeur de code.

    2. Sélectionnez PromQL dans les options du bouton Langage. Le bouton d'activation du langage se trouve en bas du volet Éditeur de code.

    3. Saisissez votre requête dans l'éditeur de requête. Par exemple, pour représenter le nombre moyen de secondes de CPU passées dans chaque mode au cours de la dernière heure, utilisez la requête suivante:

      avg(rate(kubernetes_io:anthos_container_cpu_usage_seconds_total
      {monitored_resource="k8s_node"}[1h]))
      

    Pour en savoir plus sur l'utilisation de PromQL, consultez PromQL dans Cloud Monitoring.

La capture d'écran suivante montre un graphique qui affiche la métrique anthos_container_cpu_usage_seconds_total:

Graphique de Managed Service pour Prometheus pour la métrique Prometheus "anthos_container_cpu_usage_seconds_total".

Si vous collectez de grandes quantités de données, vous pouvez filtrer les métriques exportées afin de limiter les coûts.

Activer Cloud Logging pour les applications utilisateur

La configuration de Cloud Logging et Cloud Monitoring se trouve dans un objet Stackdriver nommé stackdriver.

  1. Ouvrez l'objet Stackdriver pour le modifier :

    kubectl --kubeconfig=CLUSTER_KUBECONFIG \
        --namespace kube-system edit stackdriver stackdriver
    

    Remplacez CLUSTER_KUBECONFIG par le chemin d'accès du fichier kubeconfig de votre cluster d'utilisateur.

  2. Dans la section spec, définissez enableCloudLoggingForApplications sur true :

    apiVersion: addons.gke.io/v1alpha1
      kind: Stackdriver
      metadata:
        name: stackdriver
        namespace: kube-system
      spec:
        projectID: ...
        clusterName: ...
        clusterLocation: ...
        proxyConfigSecretName: ...
        enableCloudLoggingForApplications: true
        enableVPC: ...
        optimizedMetrics: true
    
  3. Enregistrez et fermez le fichier modifié.

Exécuter un exemple d'application

Dans cette section, vous allez créer une application qui écrit des journaux personnalisés.

  1. Enregistrez les fichiers manifestes de déploiement suivant dans un fichier nommé my-app.yaml.

    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: "monitoring-example"
      namespace: "default"
      labels:
        app: "monitoring-example"
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: "monitoring-example"
      template:
        metadata:
          labels:
            app: "monitoring-example"
        spec:
          containers:
          - image: gcr.io/google-samples/prometheus-dummy-exporter:latest
            name: prometheus-example-exporter
            imagePullPolicy: Always
            command:
            - /bin/sh
            - -c
            - ./prometheus-dummy-exporter --metric-name=example_monitoring_up --metric-value=1 --port=9090
            resources:
              requests:
                cpu: 100m
    
  2. Créer le déploiement

    kubectl --kubeconfig CLUSTER_KUBECONFIG apply -f my-app.yaml
    

Afficher les journaux d'application

Console

  1. Accédez à l'explorateur de journaux dans la console Google Cloud.

    Accéder à l'explorateur de journaux

  2. Cliquez sur Ressource. Dans le menu TOUS LES TYPES DE RESSOURCES, sélectionnez Conteneur Kubernetes.

  3. Sous CLUSTER_NAME, sélectionnez le nom de votre cluster d'utilisateur.

  4. Sous NAMESPACE_NAME, sélectionnez default.

  5. Cliquez sur Ajouter, puis sur Exécuter la requête.

  6. Les entrées de journal du déploiement monitoring-example sont affichées sous Résultats de la requête. Exemple :

    {
      "textPayload": "2020/11/14 01:24:24 Starting to listen on :9090\n",
      "insertId": "1oa4vhg3qfxidt",
      "resource": {
        "type": "k8s_container",
        "labels": {
          "pod_name": "monitoring-example-7685d96496-xqfsf",
          "cluster_name": ...,
          "namespace_name": "default",
          "project_id": ...,
          "location": "us-west1",
          "container_name": "prometheus-example-exporter"
        }
      },
      "timestamp": "2020-11-14T01:24:24.358600252Z",
      "labels": {
        "k8s-pod/pod-template-hash": "7685d96496",
        "k8s-pod/app": "monitoring-example"
      },
      "logName": "projects/.../logs/stdout",
      "receiveTimestamp": "2020-11-14T01:24:39.562864735Z"
    }
    

gcloud CLI

  1. Exécutez cette commande :

    gcloud logging read 'resource.labels.project_id="PROJECT_ID" AND \
        resource.type="k8s_container" AND resource.labels.namespace_name="default"'
    

    Remplacez PROJECT_ID par l'ID de votre projet.

  2. Le résultat affiche les entrées de journal du déploiement monitoring-example. Exemple :

    insertId: 1oa4vhg3qfxidt
    labels:
      k8s-pod/app: monitoring-example
      k8s- pod/pod-template-hash: 7685d96496
    logName: projects/.../logs/stdout
    receiveTimestamp: '2020-11-14T01:24:39.562864735Z'
    resource:
      labels:
        cluster_name: ...
        container_name: prometheus-example-exporter
        location: us-west1
        namespace_name: default
        pod_name: monitoring-example-7685d96496-xqfsf
        project_id: ...
      type: k8s_container
    textPayload: |
      2020/11/14 01:24:24 Starting to listen on :9090
    timestamp: '2020-11-14T01:24:24.358600252Z'
    

Activer Logging et Monitoring pour les applications utilisateur (ancien)

Il est vivement recommandé d'utiliser les enableGMPForApplications et enableCloudLoggingForApplications ci-dessus afin d'activer la surveillance et la journalisation pour les applications utilisateur.

Les étapes suivantes fonctionnent toujours, mais ne sont pas recommandées. Veuillez lire ce problème connu avant de suivre les étapes ci-dessous.

Pour activer Logging et Monitoring pour vos applications, utilisez le champ spec.clusterOperations.enableApplication dans le fichier de configuration du cluster.

  1. Mettez à jour le fichier de configuration du cluster pour définir enableApplication sur true :

    apiVersion: v1
    kind: Namespace
    metadata:
      name: cluster-user-basic
    ---
    apiVersion: baremetal.cluster.gke.io/v1
    kind: Cluster
    metadata:
      name: user-basic
      namespace: cluster-user-basic
    spec:
      type: user
      ...
      clusterOperations:
        projectID: project-fleet
        location: us-central1
        enableApplication: true
        ...
    
  2. Utilisez bmctl update pour appliquer vos modifications :

    bmctl update cluster -c CLUSTER_NAME --admin-kubeconfig=ADMIN_KUBECONFIG
    

    Remplacez les éléments suivants :

    • CLUSTER_NAME : nom du cluster à mettre à niveau.
    • ADMIN_KUBECONFIG : chemin d'accès au fichier kubeconfig du cluster d'administrateur.

Annoter des charges de travail

Pour activer la collecte de métriques personnalisées à partir d'une application, ajoutez l'annotation prometheus.io/scrape: "true" au fichier manifeste du service ou du pod de l'application, ou ajoutez la même annotation à la section spec.template dans le fichier manifeste "Déploiement" ou DaemonSet afin qu'elles soient transmises à leurs pods.

Exécuter un exemple d'application

Dans cette section, vous allez créer une application qui écrit des journaux personnalisés et expose une métrique personnalisée.

  1. Enregistrez les fichiers manifeste de service et de déploiement suivants dans un fichier nommé my-app.yaml. Notez que le service possède l'annotation prometheus.io/scrape: "true" :

    kind: Service
    apiVersion: v1
    metadata:
      name: "monitoring-example"
      namespace: "default"
      annotations:
        prometheus.io/scrape: "true"
    spec:
      selector:
        app: "monitoring-example"
      ports:
        - name: http
          port: 9090
    ---
    apiVersion: apps/v1
    kind: Deployment
    metadata:
      name: "monitoring-example"
      namespace: "default"
      labels:
        app: "monitoring-example"
    spec:
      replicas: 1
      selector:
        matchLabels:
          app: "monitoring-example"
      template:
        metadata:
          labels:
            app: "monitoring-example"
        spec:
          containers:
          - image: gcr.io/google-samples/prometheus-dummy-exporter:latest
            name: prometheus-example-exporter
            imagePullPolicy: Always
            command:
            - /bin/sh
            - -c
            - ./prometheus-dummy-exporter --metric-name=example_monitoring_up --metric-value=1 --port=9090
            resources:
              requests:
                cpu: 100m
    
  2. Créez le déploiement et le service :

    kubectl --kubeconfig CLUSTER_KUBECONFIG apply -f my-app.yaml
    

Afficher les journaux d'application

Console

  1. Accédez à l'explorateur de journaux dans la console Google Cloud.

    Accéder à l'explorateur de journaux

  2. Cliquez sur Ressource. Sous TOUS LES TYPES DE RESSOURCES, sélectionnez Conteneur Kubernetes.

  3. Sous CLUSTER_NAME, sélectionnez le nom de votre cluster d'utilisateur.

  4. Sous NAMESPACE_NAME, sélectionnez default.

  5. Cliquez sur Ajouter, puis sur Exécuter la requête.

  6. Les entrées de journal du déploiement monitoring-example sont affichées sous Résultats de la requête. Exemple :

    {
      "textPayload": "2020/11/14 01:24:24 Starting to listen on :9090\n",
      "insertId": "1oa4vhg3qfxidt",
      "resource": {
        "type": "k8s_container",
        "labels": {
          "pod_name": "monitoring-example-7685d96496-xqfsf",
          "cluster_name": ...,
          "namespace_name": "default",
          "project_id": ...,
          "location": "us-west1",
          "container_name": "prometheus-example-exporter"
        }
      },
      "timestamp": "2020-11-14T01:24:24.358600252Z",
      "labels": {
        "k8s-pod/pod-template-hash": "7685d96496",
        "k8s-pod/app": "monitoring-example"
      },
      "logName": "projects/.../logs/stdout",
      "receiveTimestamp": "2020-11-14T01:24:39.562864735Z"
    }
    

gcloud CLI

  1. Exécutez cette commande :

    gcloud logging read 'resource.labels.project_id="PROJECT_ID" AND \
        resource.type="k8s_container" AND resource.labels.namespace_name="default"'
    

    Remplacez PROJECT_ID par l'ID de votre projet.

  2. Le résultat affiche les entrées de journal du déploiement monitoring-example. Exemple :

    insertId: 1oa4vhg3qfxidt
    labels:
      k8s-pod/app: monitoring-example
      k8s- pod/pod-template-hash: 7685d96496
    logName: projects/.../logs/stdout
    receiveTimestamp: '2020-11-14T01:24:39.562864735Z'
    resource:
      labels:
        cluster_name: ...
        container_name: prometheus-example-exporter
        location: us-west1
        namespace_name: default
        pod_name: monitoring-example-7685d96496-xqfsf
        project_id: ...
      type: k8s_container
    textPayload: |
      2020/11/14 01:24:24 Starting to listen on :9090
    timestamp: '2020-11-14T01:24:24.358600252Z'
    

Afficher les métriques de l'application dans Google Cloud Console

Votre exemple d'application présente une métrique personnalisée nommée example_monitoring_up. Vous pouvez consulter les valeurs de cette métrique dans la console Google Cloud.

  1. Accédez à l'explorateur de métriques dans la console Google Cloud.

    Accéder à l'explorateur de métriques

  2. Dans le champ Type de ressource, sélectionnez Kubernetes Pod ou Kubernetes Container.

  3. Pour Métrique, sélectionnez external.googleapis.com/prometheus/example_monitoring_up.

  4. Le graphique montre que example_monitoring_up a une valeur répétée de 1.