Ejecutar un flujo de trabajo con las bibliotecas de cliente de Cloud

En esta guía de inicio rápido se muestra cómo ejecutar un flujo de trabajo y ver los resultados de la ejecución con las bibliotecas de cliente de Cloud.

Para obtener más información sobre cómo instalar las bibliotecas de cliente de Cloud y configurar tu entorno de desarrollo, consulta la descripción general de las bibliotecas de cliente de Workflows.

Puedes completar los pasos siguientes mediante la CLI de Google Cloud en tu terminal o en Cloud Shell.

Antes de empezar

Es posible que las restricciones de seguridad definidas por tu organización te impidan completar los siguientes pasos. Para obtener información sobre cómo solucionar problemas, consulta el artículo Desarrollar aplicaciones en un entorno limitado Google Cloud .

  1. Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
  2. Install the Google Cloud CLI.

  3. Si utilizas un proveedor de identidades (IdP) externo, primero debes iniciar sesión en la CLI de gcloud con tu identidad federada.

  4. Para inicializar gcloud CLI, ejecuta el siguiente comando:

    gcloud init
  5. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  6. Verify that billing is enabled for your Google Cloud project.

  7. Enable the Workflows API:

    gcloud services enable workflows.googleapis.com
  8. Set up authentication:

    1. Create the service account:

      gcloud iam service-accounts create SERVICE_ACCOUNT_NAME

      Replace SERVICE_ACCOUNT_NAME with a name for the service account.

    2. Grant the roles/owner IAM role to the service account:

      gcloud projects add-iam-policy-binding PROJECT_ID --member="serviceAccount:SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com" --role=roles/owner

      Replace the following:

      • SERVICE_ACCOUNT_NAME: the name of the service account
      • PROJECT_ID: the project ID where you created the service account
  9. Install the Google Cloud CLI.

  10. Si utilizas un proveedor de identidades (IdP) externo, primero debes iniciar sesión en la CLI de gcloud con tu identidad federada.

  11. Para inicializar gcloud CLI, ejecuta el siguiente comando:

    gcloud init
  12. Create or select a Google Cloud project.

    • Create a Google Cloud project:

      gcloud projects create PROJECT_ID

      Replace PROJECT_ID with a name for the Google Cloud project you are creating.

    • Select the Google Cloud project that you created:

      gcloud config set project PROJECT_ID

      Replace PROJECT_ID with your Google Cloud project name.

  13. Verify that billing is enabled for your Google Cloud project.

  14. Enable the Workflows API:

    gcloud services enable workflows.googleapis.com
  15. Set up authentication:

    1. Create the service account:

      gcloud iam service-accounts create SERVICE_ACCOUNT_NAME

      Replace SERVICE_ACCOUNT_NAME with a name for the service account.

    2. Grant the roles/owner IAM role to the service account:

      gcloud projects add-iam-policy-binding PROJECT_ID --member="serviceAccount:SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com" --role=roles/owner

      Replace the following:

      • SERVICE_ACCOUNT_NAME: the name of the service account
      • PROJECT_ID: the project ID where you created the service account
  16. (Opcional) Para enviar registros a Cloud Logging, asigna el roles/logging.logWriter a la cuenta de servicio.

    gcloud projects add-iam-policy-binding PROJECT_ID \
        --member "serviceAccount:SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com" \
        --role "roles/logging.logWriter"

    Para obtener más información sobre los roles y permisos de las cuentas de servicio, consulta Conceder permiso a un flujo de trabajo para acceder a recursosGoogle Cloud .

  17. Si es necesario, descarga e instala la herramienta de gestión de código fuente Git.
  18. Desplegar un flujo de trabajo de ejemplo

    Una vez que hayas definido un flujo de trabajo, debes implementarlo para que se pueda ejecutar. El paso de implementación también valida que el archivo de origen se pueda ejecutar.

    El siguiente flujo de trabajo envía una solicitud a una API pública y, a continuación, devuelve la respuesta de la API.

    1. Crea un archivo de texto con el nombre myFirstWorkflow.yaml con el siguiente contenido:

      # This workflow accepts an optional "searchTerm" argument for the Wikipedia API.
      # If no input arguments are provided or "searchTerm" is absent,
      # it will fetch the day of the week in Amsterdam and use it as the search term.
      
      main:
          params: [input]
          steps:
          - validateSearchTermAndRedirectToReadWikipedia:
              switch:
                  - condition: '${map.get(input, "searchTerm") != null}'
                    assign:
                      - searchTerm: '${input.searchTerm}'
                    next: readWikipedia
          - getCurrentTime:
              call: http.get
              args:
                  url: https://timeapi.io/api/Time/current/zone?timeZone=Europe/Amsterdam
              result: currentTime
          - setFromCallResult:
              assign:
                  - searchTerm: '${currentTime.body.dayOfWeek}'
          - readWikipedia:
              call: http.get
              args:
                  url: 'https://en.wikipedia.org/w/api.php'
                  query:
                      action: opensearch
                      search: '${searchTerm}'
              result: wikiResult
          - returnOutput:
                  return: '${wikiResult.body[1]}'
    2. Después de crear el flujo de trabajo, puede implementarlo, pero no lo ejecute:

      gcloud workflows deploy myFirstWorkflow \
          --source=myFirstWorkflow.yaml \
          --service-account=SERVICE_ACCOUNT_NAME@PROJECT_ID.iam.gserviceaccount.com \
          --location=CLOUD_REGION

      Sustituye CLOUD_REGION por una ubicación admitida en el flujo de trabajo. La región predeterminada que se usa en los ejemplos de código es us-central1.

    Obtén el código de ejemplo

    Puedes clonar el código de ejemplo de GitHub.

    1. Clona el repositorio de aplicaciones de muestra en la máquina local:

      C#

      git clone https://github.com/GoogleCloudPlatform/dotnet-docs-samples.git

      También puedes descargar el ejemplo como un archivo ZIP y extraerlo.

      Go

      git clone https://github.com/GoogleCloudPlatform/golang-samples.git

      También puedes descargar el ejemplo como un archivo ZIP y extraerlo.

      Java

      git clone https://github.com/GoogleCloudPlatform/java-docs-samples.git

      También puedes descargar el ejemplo como un archivo ZIP y extraerlo.

      Node.js

      git clone https://github.com/GoogleCloudPlatform/nodejs-docs-samples.git

      También puedes descargar el ejemplo como un archivo ZIP y extraerlo.

      Python

      git clone https://github.com/GoogleCloudPlatform/python-docs-samples.git

      También puedes descargar el ejemplo como un archivo ZIP y extraerlo.

    2. Cambia al directorio que contiene el código de ejemplo de Workflows:

      C#

      cd dotnet-docs-samples/workflows/api/Workflow.Samples/

      Go

      cd golang-samples/workflows/executions/

      Java

      cd java-docs-samples/workflows/cloud-client/

      Node.js

      cd nodejs-docs-samples/workflows/quickstart/

      Python

      cd python-docs-samples/workflows/cloud-client/

    3. Echa un vistazo al código de muestra. Cada aplicación de ejemplo hace lo siguiente:

      1. Configura las bibliotecas de cliente de Cloud para Workflows.
      2. Ejecuta un flujo de trabajo.
      3. Consulta la ejecución del flujo de trabajo (con un tiempo de espera exponencial) hasta que finaliza.
      4. Muestra los resultados de la ejecución.

      C#

      
      using Google.Cloud.Workflows.Common.V1;
      using Google.Cloud.Workflows.Executions.V1;
      using System;
      using System.Threading;
      using System.Threading.Tasks;
      
      public class ExecuteWorkflowSample
      {
          /// <summary>
          /// Execute a workflow and return the execution operation.
          /// </summary>
          /// <param name="projectID">Your Google Cloud Project ID.</param>
          /// <param name="locationID">The region where your workflow is located.</param>
          /// <param name="workflowID">Your Workflow ID.</param>
          /// <returns>
          /// An Execute object representing the completed workflow execution.
          /// </returns>
          public async Task<Execution> ExecuteWorkflow(
              string projectId = "YOUR-PROJECT-ID",
              string locationID = "YOUR-LOCATION-ID",
              string workflowID = "YOUR-WORKFLOW-ID")
          {
              // Initialize the client.
              ExecutionsClient client = await ExecutionsClient.CreateAsync();
      
              // Build the parent location path.
              WorkflowName parent = new WorkflowName(projectId, locationID, workflowID);
      
              // Create an execution request.
              CreateExecutionRequest createExecutionRequest = new CreateExecutionRequest
              {
                  ParentAsWorkflowName = parent,
              };
      
              // Execute the operation.
              Execution execution = await client.CreateExecutionAsync(createExecutionRequest);
              Console.WriteLine("- Execution started...");
      
              TimeSpan backoffDelay = TimeSpan.FromSeconds(1);
              TimeSpan maxBackoffDelay = TimeSpan.FromSeconds(16);
      
              // Keep polling the state until the execution finishes, using exponential backoff.
              while (execution.State == Execution.Types.State.Active)
              {
                  await Task.Delay(backoffDelay);
      
                  // Implement exponential backoff by doubling the delay, but limiting it to a practical duration.
                  backoffDelay = (backoffDelay < maxBackoffDelay) ? backoffDelay * 2 : maxBackoffDelay;
      
                  execution = await client.GetExecutionAsync(execution.Name);
              }
      
              // Print results.
              Console.WriteLine($"Execution finished with state: {execution.State}");
              Console.WriteLine($"Execution results: {execution.Result}");
      
              // Return the fetched execution.
              return execution;
          }
      }

      Go

      import (
      	"context"
      	"fmt"
      	"io"
      	"time"
      
      	workflowexecutions "google.golang.org/api/workflowexecutions/v1"
      )
      
      // Execute a workflow and print the execution results.
      //
      // For more information about Workflows see:
      // https://cloud.google.com/workflows/docs/overview
      func executeWorkflow(w io.Writer, projectID, workflowID, locationID string) error {
      	// TODO(developer): Uncomment and update the following lines:
      	// projectID := "YOUR_PROJECT_ID"
      	// workflowID := "YOUR_WORKFLOW_ID"
      	// locationID := "YOUR_LOCATION_ID"
      
      	ctx := context.Background()
      
      	// Construct the location path.
      	parent := fmt.Sprintf("projects/%s/locations/%s/workflows/%s", projectID, locationID, workflowID)
      
      	// Create execution client.
      	client, err := workflowexecutions.NewService(ctx)
      	if err != nil {
      		return fmt.Errorf("workflowexecutions.NewService error: %w", err)
      	}
      
      	// Get execution service.
      	service := client.Projects.Locations.Workflows.Executions
      
      	// Build and run the new workflow execution.
      	res, err := service.Create(parent, &workflowexecutions.Execution{}).Do()
      	if err != nil {
      		return fmt.Errorf("service.Create.Do error: %w", err)
      	}
      	fmt.Fprintln(w, "- Execution started...")
      
      	// Set initial value for backoff delay in one second.
      	backoffDelay := time.Second
      
      	for res.State == "ACTIVE" {
      		time.Sleep(backoffDelay)
      
      		// Request the updated state for the execution.
      		getReq := service.Get(res.Name)
      		res, err = getReq.Do()
      		if err != nil {
      			return fmt.Errorf("getReq error: %w", err)
      		}
      
      		// Double the delay to provide exponential backoff (capped at 16 seconds).
      		if backoffDelay < time.Second*16 {
      			backoffDelay *= 2
      		}
      	}
      
      	fmt.Fprintf(w, "Execution finished with state: %s\n", res.State)
      	fmt.Fprintf(w, "Execution results: %s\n", res.Result)
      
      	return nil
      }
      

      Java

      // Imports the Google Cloud client library
      
      import com.google.cloud.workflows.executions.v1.CreateExecutionRequest;
      import com.google.cloud.workflows.executions.v1.Execution;
      import com.google.cloud.workflows.executions.v1.ExecutionsClient;
      import com.google.cloud.workflows.executions.v1.WorkflowName;
      import java.io.IOException;
      import java.util.concurrent.ExecutionException;
      
      public class WorkflowsQuickstart {
      
        private static final String PROJECT = System.getenv("GOOGLE_CLOUD_PROJECT");
        private static final String LOCATION = System.getenv().getOrDefault("LOCATION", "us-central1");
        private static final String WORKFLOW =
            System.getenv().getOrDefault("WORKFLOW", "myFirstWorkflow");
      
        public static void main(String... args)
            throws IOException, InterruptedException, ExecutionException {
          if (PROJECT == null) {
            throw new IllegalArgumentException(
                "Environment variable 'GOOGLE_CLOUD_PROJECT' is required to run this quickstart.");
          }
          workflowsQuickstart(PROJECT, LOCATION, WORKFLOW);
        }
      
        private static volatile boolean finished;
      
        public static void workflowsQuickstart(String projectId, String location, String workflow)
            throws IOException, InterruptedException, ExecutionException {
          // Initialize client that will be used to send requests. This client only needs
          // to be created once, and can be reused for multiple requests. After completing all of your
          // requests, call the "close" method on the client to safely clean up any remaining background
          // resources.
          try (ExecutionsClient executionsClient = ExecutionsClient.create()) {
            // Construct the fully qualified location path.
            WorkflowName parent = WorkflowName.of(projectId, location, workflow);
      
            // Creates the execution object.
            CreateExecutionRequest request =
                CreateExecutionRequest.newBuilder()
                    .setParent(parent.toString())
                    .setExecution(Execution.newBuilder().build())
                    .build();
            Execution response = executionsClient.createExecution(request);
      
            String executionName = response.getName();
            System.out.printf("Created execution: %s%n", executionName);
      
            long backoffTime = 0;
            long backoffDelay = 1_000; // Start wait with delay of 1,000 ms
            final long backoffTimeout = 10 * 60 * 1_000; // Time out at 10 minutes
            System.out.println("Poll for results...");
      
            // Wait for execution to finish, then print results.
            while (!finished && backoffTime < backoffTimeout) {
              Execution execution = executionsClient.getExecution(executionName);
              finished = execution.getState() != Execution.State.ACTIVE;
      
              // If we haven't seen the results yet, wait.
              if (!finished) {
                System.out.println("- Waiting for results");
                Thread.sleep(backoffDelay);
                backoffTime += backoffDelay;
                backoffDelay *= 2; // Double the delay to provide exponential backoff.
              } else {
                System.out.println("Execution finished with state: " + execution.getState().name());
                System.out.println("Execution results: " + execution.getResult());
              }
            }
          }
        }
      }

      Node.js

      const {ExecutionsClient} = require('@google-cloud/workflows');
      const client = new ExecutionsClient();
      /**
       * TODO(developer): Uncomment these variables before running the sample.
       */
      // const projectId = 'my-project';
      // const location = 'us-central1';
      // const workflow = 'myFirstWorkflow';
      // const searchTerm = '';
      
      /**
       * Executes a Workflow and waits for the results with exponential backoff.
       * @param {string} projectId The Google Cloud Project containing the workflow
       * @param {string} location The workflow location
       * @param {string} workflow The workflow name
       * @param {string} searchTerm Optional search term to pass to the Workflow as a runtime argument
       */
      async function executeWorkflow(projectId, location, workflow, searchTerm) {
        /**
         * Sleeps the process N number of milliseconds.
         * @param {Number} ms The number of milliseconds to sleep.
         */
        function sleep(ms) {
          return new Promise(resolve => {
            setTimeout(resolve, ms);
          });
        }
        const runtimeArgs = searchTerm ? {searchTerm: searchTerm} : {};
        // Execute workflow
        try {
          const createExecutionRes = await client.createExecution({
            parent: client.workflowPath(projectId, location, workflow),
            execution: {
              // Runtime arguments can be passed as a JSON string
              argument: JSON.stringify(runtimeArgs),
            },
          });
          const executionName = createExecutionRes[0].name;
          console.log(`Created execution: ${executionName}`);
      
          // Wait for execution to finish, then print results.
          let executionFinished = false;
          let backoffDelay = 1000; // Start wait with delay of 1,000 ms
          console.log('Poll every second for result...');
          while (!executionFinished) {
            const [execution] = await client.getExecution({
              name: executionName,
            });
            executionFinished = execution.state !== 'ACTIVE';
      
            // If we haven't seen the result yet, wait a second.
            if (!executionFinished) {
              console.log('- Waiting for results...');
              await sleep(backoffDelay);
              backoffDelay *= 2; // Double the delay to provide exponential backoff.
            } else {
              console.log(`Execution finished with state: ${execution.state}`);
              console.log(execution.result);
              return execution.result;
            }
          }
        } catch (e) {
          console.error(`Error executing workflow: ${e}`);
        }
      }
      
      executeWorkflow(projectId, location, workflowName, searchTerm).catch(err => {
        console.error(err.message);
        process.exitCode = 1;
      });
      

      Python

      import time
      
      from google.cloud import workflows_v1
      from google.cloud.workflows import executions_v1
      
      from google.cloud.workflows.executions_v1.types import executions
      
      # TODO(developer): Update and uncomment the following lines.
      # project_id = "YOUR_PROJECT_ID"
      # location = "YOUR_LOCATION"  # For example: us-central1
      # workflow_id = "YOUR_WORKFLOW_ID"  # For example: myFirstWorkflow
      
      # Initialize API clients.
      execution_client = executions_v1.ExecutionsClient()
      workflows_client = workflows_v1.WorkflowsClient()
      
      # Construct the fully qualified location path.
      parent = workflows_client.workflow_path(project_id, location, workflow_id)
      
      # Execute the workflow.
      response = execution_client.create_execution(request={"parent": parent})
      print(f"Created execution: {response.name}")
      
      # Wait for execution to finish, then print results.
      execution_finished = False
      backoff_delay = 1  # Start wait with delay of 1 second.
      print("Poll for result...")
      
      # Keep polling the state until the execution finishes,
      # using exponential backoff.
      while not execution_finished:
          execution = execution_client.get_execution(
              request={"name": response.name}
          )
          execution_finished = execution.state != executions.Execution.State.ACTIVE
      
          # If we haven't seen the result yet, keep waiting.
          if not execution_finished:
              print("- Waiting for results...")
              time.sleep(backoff_delay)
              # Double the delay to provide exponential backoff.
              backoff_delay *= 2
          else:
              print(f"Execution finished with state: {execution.state.name}")
              print(f"Execution results: {execution.result}")

    Ejecutar el código de ejemplo

    Puedes ejecutar el código de ejemplo y tu flujo de trabajo. Al ejecutar un flujo de trabajo, se ejecuta la definición del flujo de trabajo desplegado asociado a él.

    1. Para ejecutar el ejemplo, primero instala las dependencias:

      C#

      dotnet restore

      Go

      go mod download

      Java

      mvn compile

      Node.js

      npm install -D tsx

      Python

      pip3 install -r requirements.txt

    2. Ejecuta la secuencia de comandos:

      C#

      GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME dotnet run

      Go

      GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME go run .

      Java

      GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME mvn compile exec:java -Dexec.mainClass=com.example.workflows.WorkflowsQuickstart

      Node.js

      npx tsx index.js

      Python

      GOOGLE_CLOUD_PROJECT=PROJECT_ID LOCATION=CLOUD_REGION WORKFLOW=WORKFLOW_NAME python3 main.py

      Haz los cambios siguientes:

      • PROJECT_ID: nombre Google Cloud del proyecto
      • CLOUD_REGION: la ubicación de tu flujo de trabajo (valor predeterminado: us-central1)
      • WORKFLOW_NAME: nombre del flujo de trabajo (predeterminado: myFirstWorkflow)

      El resultado debería ser similar al siguiente:

      Execution finished with state: SUCCEEDED
      Execution results: ["Thursday","Thursday Night Football","Thursday (band)","Thursday Island","Thursday (album)","Thursday Next","Thursday at the Square","Thursday's Child (David Bowie song)","Thursday Afternoon","Thursday (film)"]
      

    Transferir datos en una solicitud de ejecución

    Según el lenguaje de la biblioteca de cliente, también puedes transferir un argumento del entorno de ejecución en una solicitud de ejecución. Por ejemplo:

    C#

    
    public class ExecuteWorkflowWithArgumentsSample
    {
        /// <summary>
        /// Execute a workflow with arguments and return the execution operation.
        /// </summary>
        /// <param name="projectID">Your Google Cloud Project ID.</param>
        /// <param name="locationID">The region where your workflow is located.</param>
        /// <param name="workflowID">Your Workflow ID.</param>
        /// <returns>
        /// An Execute object representing the completed workflow execution.
        /// </returns>
        public async Task<Execution> ExecuteWorkflowWithArguments(
            string projectId = "YOUR-PROJECT-ID",
            string locationID = "YOUR-LOCATION-ID",
            string workflowID = "YOUR-WORKFLOW-ID")
        {
            // Initialize the client.
            ExecutionsClient client = await ExecutionsClient.CreateAsync();
    
            // Build the parent location path.
            WorkflowName parent = new WorkflowName(projectId, locationID, workflowID);
    
            // Serialize the argument.
            string argument = JsonSerializer.Serialize(new
            {
                searchTerm = "Cloud"
            });
    
            // Create an execution request.
            CreateExecutionRequest createExecutionRequest = new CreateExecutionRequest
            {
                ParentAsWorkflowName = parent,
                Execution = new Execution
                {
                    Argument = argument,
                }
            };
    
            // Execute the operation and recieve the execution.
            Execution execution = await client.CreateExecutionAsync(createExecutionRequest);
            Console.WriteLine("- Execution started...");
    
            TimeSpan backoffDelay = TimeSpan.FromSeconds(1);
            TimeSpan maxBackoffDelay = TimeSpan.FromSeconds(16);
    
            // Keep polling the state until the execution finishes, using exponential backoff.
            while (execution.State == Execution.Types.State.Active)
            {
                await Task.Delay(backoffDelay);
    
                // Implement exponential backoff by doubling the delay, but limiting it to a practical duration.
                backoffDelay = (backoffDelay < maxBackoffDelay) ? backoffDelay * 2 : maxBackoffDelay;
    
                execution = await client.GetExecutionAsync(execution.Name);
            }
    
            // Print results.
            Console.WriteLine($"Execution finished with state: {execution.State}");
            Console.WriteLine($"Execution results: {execution.Result}");
    
            // Return the fetched execution.
            return execution;
        }
    }

    Go

    import (
    	"context"
    	"encoding/json"
    	"fmt"
    	"io"
    	"time"
    
    	workflowexecutions "google.golang.org/api/workflowexecutions/v1"
    )
    
    // Execute a workflow with arguments and print the execution results.
    //
    // For more information about Workflows see:
    // https://cloud.google.com/workflows/docs/overview
    func executeWorkflowWithArguments(w io.Writer, projectID, workflowID, locationID string) error {
    	// TODO(developer): Uncomment and update the following lines:
    	// projectID := "YOUR_PROJECT_ID"
    	// workflowID := "YOUR_WORKFLOW_ID"
    	// locationID := "YOUR_LOCATION_ID"
    
    	ctx := context.Background()
    
    	// Construct the location path.
    	parent := fmt.Sprintf("projects/%s/locations/%s/workflows/%s", projectID, locationID, workflowID)
    
    	// Create execution client.
    	client, err := workflowexecutions.NewService(ctx)
    	if err != nil {
    		return fmt.Errorf("workflowexecutions.NewService error: %w", err)
    	}
    
    	// Get execution service.
    	service := client.Projects.Locations.Workflows.Executions
    
    	// Create argument.
    	argument := struct {
    		SearchTerm string `json:"searchTerm"`
    	}{
    		SearchTerm: "Cloud",
    	}
    
    	// Encode argument to JSON.
    	argumentEncoded, err := json.Marshal(argument)
    	if err != nil {
    		return fmt.Errorf("json.Marshal error: %w", err)
    	}
    
    	// Build and run the new workflow execution adding the argument.
    	res, err := service.Create(parent, &workflowexecutions.Execution{
    		Argument: string(argumentEncoded),
    	}).Do()
    	if err != nil {
    		return fmt.Errorf("service.Create.Do error: %w", err)
    	}
    	fmt.Fprintln(w, "- Execution started...")
    
    	// Set initial value for backoff delay in one second.
    	backoffDelay := time.Second
    
    	for res.State == "ACTIVE" {
    		time.Sleep(backoffDelay)
    
    		// Request the updated state for the execution.
    		getReq := service.Get(res.Name)
    		res, err = getReq.Do()
    		if err != nil {
    			return fmt.Errorf("getReq error: %w", err)
    		}
    
    		// Double the delay to provide exponential backoff (capped at 16 seconds).
    		if backoffDelay < time.Second*16 {
    			backoffDelay *= 2
    		}
    	}
    
    	fmt.Fprintf(w, "Execution finished with state: %s\n", res.State)
    	fmt.Fprintf(w, "Execution arguments: %s", res.Argument)
    	fmt.Fprintf(w, "Execution results: %s\n", res.Result)
    
    	return nil
    }
    

    Java

    // Creates the execution object
    CreateExecutionRequest request =
        CreateExecutionRequest.newBuilder()
            .setParent(parent.toString())
            .setExecution(Execution.newBuilder().setArgument("{\"searchTerm\":\"Friday\"}").build())
            .build();
    

    Node.js

    // Execute workflow
    try {
      const createExecutionRes = await client.createExecution({
        parent: client.workflowPath(projectId, location, workflow),
        execution: {
          argument: JSON.stringify({"searchTerm": "Friday"})
        }
    });
    const executionName = createExecutionRes[0].name;
    

    Python

    import time
    
    from google.cloud import workflows_v1
    from google.cloud.workflows import executions_v1
    
    from google.cloud.workflows.executions_v1.types import executions
    
    # TODO(developer): Update and uncomment the following lines.
    # project_id = "YOUR_PROJECT_ID"
    # location = "YOUR_LOCATION"  # For example: us-central1
    # workflow_id = "YOUR_WORKFLOW_ID"  # For example: myFirstWorkflow
    
    # Initialize API clients.
    execution_client = executions_v1.ExecutionsClient()
    workflows_client = workflows_v1.WorkflowsClient()
    
    # Construct the fully qualified location path.
    parent = workflows_client.workflow_path(project_id, location, workflow_id)
    
    # Execute the workflow adding an dictionary of arguments.
    # Find more information about the Execution object here:
    # https://cloud.google.com/python/docs/reference/workflows/latest/google.cloud.workflows.executions_v1.types.Execution
    execution = executions_v1.Execution(
        name=parent,
        argument='{"searchTerm": "Cloud"}',
    )
    
    response = execution_client.create_execution(
        parent=parent,
        execution=execution,
    )
    print(f"Created execution: {response.name}")
    
    # Wait for execution to finish, then print results.
    execution_finished = False
    backoff_delay = 1  # Start wait with delay of 1 second.
    print("Poll for result...")
    
    # Keep polling the state until the execution finishes,
    # using exponential backoff.
    while not execution_finished:
        execution = execution_client.get_execution(
            request={"name": response.name}
        )
        execution_finished = execution.state != executions.Execution.State.ACTIVE
    
        # If we haven't seen the result yet, keep waiting.
        if not execution_finished:
            print("- Waiting for results...")
            time.sleep(backoff_delay)
            # Double the delay to provide exponential backoff.
            backoff_delay *= 2
        else:
            print(f"Execution finished with state: {execution.state.name}")
            print(f"Execution results: {execution.result}")

    Para obtener más información sobre cómo transferir argumentos del entorno de ejecución, consulta el artículo Transferir argumentos del entorno de ejecución en una solicitud de ejecución.

    Limpieza

    Para evitar que se apliquen cargos en tu Google Cloud cuenta por los recursos utilizados en esta página, elimina el Google Cloud proyecto con los recursos.

    1. Elimina el flujo de trabajo que has creado:

      gcloud workflows delete myFirstWorkflow
      
    2. Cuando se te pregunte si quieres continuar, escribe y.

    El flujo de trabajo se elimina.

    Siguientes pasos