Detectar rostros en un archivo local

Detección de rostro en un archivo local.

Explora más

Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:

Muestra de código

Go

Antes de probar este código de muestra, sigue las instrucciones de configuración para Go que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Go.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


// detectFaces gets faces from the Vision API for an image at the given file path.
func detectFaces(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}
	defer client.Close()

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.DetectFaces(ctx, image, nil, 10)
	if err != nil {
		return err
	}
	if len(annotations) == 0 {
		fmt.Fprintln(w, "No faces found.")
	} else {
		fmt.Fprintln(w, "Faces:")
		for i, annotation := range annotations {
			fmt.Fprintln(w, "  Face", i)
			fmt.Fprintln(w, "    Anger:", annotation.AngerLikelihood)
			fmt.Fprintln(w, "    Joy:", annotation.JoyLikelihood)
			fmt.Fprintln(w, "    Surprise:", annotation.SurpriseLikelihood)
		}
	}
	return nil
}

Java

Antes de probar este código de muestra, sigue las instrucciones de configuración para Java que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Java.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.FaceAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectFaces {

  public static void detectFaces() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectFaces(filePath);
  }

  // Detects faces in the specified local image.
  public static void detectFaces(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.FACE_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (FaceAnnotation annotation : res.getFaceAnnotationsList()) {
          System.out.format(
              "anger: %s%njoy: %s%nsurprise: %s%nposition: %s",
              annotation.getAngerLikelihood(),
              annotation.getJoyLikelihood(),
              annotation.getSurpriseLikelihood(),
              annotation.getBoundingPoly());
        }
      }
    }
  }
}

Node.js

Antes de probar este código de muestra, sigue las instrucciones de configuración para Node.js que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Node.js.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

async function detectFaces() {
  /**
   * TODO(developer): Uncomment the following line before running the sample.
   */
  // const fileName = 'Local image file, e.g. /path/to/image.png';

  const [result] = await client.faceDetection(fileName);
  const faces = result.faceAnnotations;
  console.log('Faces:');
  faces.forEach((face, i) => {
    console.log(`  Face #${i + 1}:`);
    console.log(`    Joy: ${face.joyLikelihood}`);
    console.log(`    Anger: ${face.angerLikelihood}`);
    console.log(`    Sorrow: ${face.sorrowLikelihood}`);
    console.log(`    Surprise: ${face.surpriseLikelihood}`);
  });
}
detectFaces();

PHP

Antes de probar este código de muestra, sigue las instrucciones de configuración para PHP que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para PHP.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

namespace Google\Cloud\Samples\Vision;

use Google\Cloud\Vision\V1\ImageAnnotatorClient;

/**
 * @param string $path    Path to the image, e.g. "path/to/your/image.jpg"
 * @param string $outFile Saves a copy of the image supplied in $path with a
 *                        rectangle drawn around the detected faces.
 */
function detect_face(string $path, string $outFile = null)
{
    $imageAnnotator = new ImageAnnotatorClient();

    # annotate the image
    // $path = 'path/to/your/image.jpg'
    $image = file_get_contents($path);
    $response = $imageAnnotator->faceDetection($image);
    $faces = $response->getFaceAnnotations();

    # names of likelihood from google.cloud.vision.enums
    $likelihoodName = ['UNKNOWN', 'VERY_UNLIKELY', 'UNLIKELY',
    'POSSIBLE', 'LIKELY', 'VERY_LIKELY'];

    printf('%d faces found:' . PHP_EOL, count($faces));
    foreach ($faces as $face) {
        $anger = $face->getAngerLikelihood();
        printf('Anger: %s' . PHP_EOL, $likelihoodName[$anger]);

        $joy = $face->getJoyLikelihood();
        printf('Joy: %s' . PHP_EOL, $likelihoodName[$joy]);

        $surprise = $face->getSurpriseLikelihood();
        printf('Surprise: %s' . PHP_EOL, $likelihoodName[$surprise]);

        # get bounds
        $vertices = $face->getBoundingPoly()->getVertices();
        $bounds = [];
        foreach ($vertices as $vertex) {
            $bounds[] = sprintf('(%d,%d)', $vertex->getX(), $vertex->getY());
        }
        print('Bounds: ' . join(', ', $bounds) . PHP_EOL);
        print(PHP_EOL);
    }
}

Python

Antes de probar este código de muestra, sigue las instrucciones de configuración para Python que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Python.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

def detect_faces(path):
    """Detects faces in an image."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    with open(path, "rb") as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.face_detection(image=image)
    faces = response.face_annotations

    # Names of likelihood from google.cloud.vision.enums
    likelihood_name = (
        "UNKNOWN",
        "VERY_UNLIKELY",
        "UNLIKELY",
        "POSSIBLE",
        "LIKELY",
        "VERY_LIKELY",
    )
    print("Faces:")

    for face in faces:
        print(f"anger: {likelihood_name[face.anger_likelihood]}")
        print(f"joy: {likelihood_name[face.joy_likelihood]}")
        print(f"surprise: {likelihood_name[face.surprise_likelihood]}")

        vertices = [
            f"({vertex.x},{vertex.y})" for vertex in face.bounding_poly.vertices
        ]

        print("face bounds: {}".format(",".join(vertices)))

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

¿Qué sigue?

Para buscar y filtrar muestras de código para otros productos de Google Cloud, consulta el navegador de muestra de Google Cloud.