Mendeteksi beberapa objek

Vision API dapat mendeteksi dan mengekstrak beberapa objek dalam gambar dengan Pelokalan Objek.

Pelokalan objek mengidentifikasi beberapa objek dalam gambar dan menyediakan LocalizedObjectAnnotation untuk setiap objek dalam gambar. Setiap LocalizedObjectAnnotation mengidentifikasi informasi tentang objek, posisi objek, dan batas persegi panjang untuk region gambar yang berisi objek.

Pelokalan objek mengidentifikasi objek yang signifikan dan kurang terlihat dalam gambar.

Informasi objek hanya ditampilkan dalam bahasa Inggris. Cloud Translation dapat menerjemahkan label bahasa Inggris ke dalam berbagai bahasa lain.

gambar dengan kotak pembatas
Kredit gambar: Bogdan Dada di Unsplash (anotasi ditambahkan).

Misalnya, API menampilkan informasi berikut dan data lokasi pembatas untuk objek dalam gambar sebelumnya:

Nama mid Skor Batas
Roda bersepeda /m/01bqk0 0.89648587 (0.32076266, 0.78941387), (0.43812272, 0.78941387), (0.43812272, 0.97331065), (0.32076266, 0.97331065)
Bersepeda /m/0199g 0.886761 (0.312, 0.6616471), (0.638353, 0.6616471), (0.638353, 0.9705882), (0.312, 0.9705882)
Roda bersepeda /m/01bqk0 0.6345275 (0.5125398, 0.760708), (0.6256646, 0.760708), (0.6256646, 0.94601655), (0.5125398, 0.94601655)
Bingkai foto /m/06z37_ 0.6207608 (0.79177403, 0.16160682), (0.97047985, 0.16160682), (0.97047985, 0.31348917), (0.79177403, 0.31348917)
Ban /m/0h9mv 0.55886006 (0.32076266, 0.78941387), (0.43812272, 0.78941387), (0.43812272, 0.97331065), (0.32076266, 0.97331065)
Pintu /m/02dgv 0.5160098 (0.77569866, 0.37104446), (0.9412425, 0.37104446), (0.9412425, 0.81507325), (0.77569866, 0.81507325)

mid berisi ID yang dihasilkan mesin (MID) yang sesuai dengan entri Pustaka Pengetahuan Google label. Untuk mengetahui informasi tentang pemeriksaan nilai mid lihat dokumentasi API Penelusuran Grafik Pengetahuan Google.

Coba sendiri

Jika Anda baru menggunakan Google Cloud, buat akun untuk mengevaluasi performa Cloud Vision API dalam skenario dunia nyata. Pelanggan baru mendapatkan kredit gratis senilai $300 untuk menjalankan, menguji, dan men-deploy workload.

Coba Cloud Vision API gratis

Permintaan Pelokalan Objek

Menyiapkan autentikasi dan project Google Cloud Anda

Mendeteksi objek pada gambar lokal

Anda dapat menggunakan Vision API untuk melakukan deteksi fitur pada file gambar lokal.

Untuk permintaan REST, kirim konten file gambar sebagai string yang berenkode base64 dalam isi permintaan Anda.

Untuk gcloud dan permintaan library klien, tentukan jalur ke gambar lokal dalam permintaan Anda.

REST

Sebelum menggunakan salah satu data permintaan, buat penggantian berikut:

  • BASE64_ENCODED_IMAGE: Representasi base64 (string ASCII) dari data gambar biner Anda. String ini akan terlihat seperti string berikut:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Kunjungi dikodekan base64 untuk informasi selengkapnya.
  • RESULTS_INT: (Opsional) Nilai bilangan bulat dari hasil yang akan ditampilkan. Jika Anda menghilangkan kolom "maxResults" dan nilainya, API akan menampilkan nilai default 10 hasil. Kolom ini tidak berlaku untuk jenis fitur berikut: TEXT_DETECTION, DOCUMENT_TEXT_DETECTION, atau CROP_HINTS.
  • PROJECT_ID: ID project Google Cloud Anda.

Metode HTTP dan URL:

POST https://vision.googleapis.com/v1/images:annotate

Isi JSON permintaan:

{
  "requests": [
    {
      "image": {
        "content": "BASE64_ENCODED_IMAGE"
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "OBJECT_LOCALIZATION"
        },
      ]
    }
  ]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK dan respons dalam format JSON.

Respons:

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


// localizeObjects gets objects and bounding boxes from the Vision API for an image at the given file path.
func localizeObjects(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.LocalizeObjects(ctx, image, nil)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No objects found.")
		return nil
	}

	fmt.Fprintln(w, "Objects:")
	for _, annotation := range annotations {
		fmt.Fprintln(w, annotation.Name)
		fmt.Fprintln(w, annotation.Score)

		for _, v := range annotation.BoundingPoly.NormalizedVertices {
			fmt.Fprintf(w, "(%f,%f)\n", v.X, v.Y)
		}
	}

	return nil
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan Memulai Vision API Menggunakan Library Klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java Vision API.

/**
 * Detects localized objects in the specified local image.
 *
 * @param filePath The path to the file to perform localized object detection on.
 * @throws Exception on errors while closing the client.
 * @throws IOException on Input/Output errors.
 */
public static void detectLocalizedObjects(String filePath) throws IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

  Image img = Image.newBuilder().setContent(imgBytes).build();
  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder()
          .addFeatures(Feature.newBuilder().setType(Type.OBJECT_LOCALIZATION))
          .setImage(img)
          .build();
  requests.add(request);

  // Initialize client that will be used to send requests. This client only needs to be created
  // once, and can be reused for multiple requests. After completing all of your requests, call
  // the "close" method on the client to safely clean up any remaining background resources.
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    // Perform the request
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();

    // Display the results
    for (AnnotateImageResponse res : responses) {
      for (LocalizedObjectAnnotation entity : res.getLocalizedObjectAnnotationsList()) {
        System.out.format("Object name: %s%n", entity.getName());
        System.out.format("Confidence: %s%n", entity.getScore());
        System.out.format("Normalized Vertices:%n");
        entity
            .getBoundingPoly()
            .getNormalizedVerticesList()
            .forEach(vertex -> System.out.format("- (%s, %s)%n", vertex.getX(), vertex.getY()));
      }
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');
const fs = require('fs');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = `/path/to/localImage.png`;
const request = {
  image: {content: fs.readFileSync(fileName)},
};

const [result] = await client.objectLocalization(request);
const objects = result.localizedObjectAnnotations;
objects.forEach(object => {
  console.log(`Name: ${object.name}`);
  console.log(`Confidence: ${object.score}`);
  const vertices = object.boundingPoly.normalizedVertices;
  vertices.forEach(v => console.log(`x: ${v.x}, y:${v.y}`));
});

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

def localize_objects(path):
    """Localize objects in the local image.

    Args:
    path: The path to the local file.
    """
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    with open(path, "rb") as image_file:
        content = image_file.read()
    image = vision.Image(content=content)

    objects = client.object_localization(image=image).localized_object_annotations

    print(f"Number of objects found: {len(objects)}")
    for object_ in objects:
        print(f"\n{object_.name} (confidence: {object_.score})")
        print("Normalized bounding polygon vertices: ")
        for vertex in object_.bounding_poly.normalized_vertices:
            print(f" - ({vertex.x}, {vertex.y})")

Bahasa tambahan

C#: Ikuti Petunjuk penyiapan C# di halaman library klien, lalu kunjungi Dokumentasi referensi Vision untuk .NET.

PHP: Ikuti Petunjuk penyiapan PHP di halaman library klien, lalu buka Dokumentasi referensi Vision untuk PHP.

Ruby: Ikuti Petunjuk penyiapan Ruby di halaman library klien, lalu kunjungi Dokumentasi referensi Vision untuk Ruby.

Mendeteksi objek pada gambar jarak jauh

Anda dapat menggunakan Vision API untuk melakukan deteksi fitur pada file gambar jarak jauh yang terletak di Cloud Storage atau di Web. Untuk mengirim permintaan file jarak jauh, tentukan URL Web atau Cloud Storage URI file dalam isi permintaan.

REST

Sebelum menggunakan salah satu data permintaan, buat penggantian berikut:

  • CLOUD_STORAGE_IMAGE_URI: jalur ke file gambar yang valid di bucket Cloud Storage. Anda setidaknya harus memiliki hak istimewa baca ke file tersebut. Contoh:
    • https://cloud.google.com/vision/docs/images/bicycle_example.png
  • RESULTS_INT: (Opsional) Nilai bilangan bulat dari hasil yang akan ditampilkan. Jika Anda menghilangkan kolom "maxResults" dan nilainya, API akan menampilkan nilai default 10 hasil. Kolom ini tidak berlaku untuk jenis fitur berikut: TEXT_DETECTION, DOCUMENT_TEXT_DETECTION, atau CROP_HINTS.
  • PROJECT_ID: ID project Google Cloud Anda.

Metode HTTP dan URL:

POST https://vision.googleapis.com/v1/images:annotate

Isi JSON permintaan:

{
  "requests": [
    {
      "image": {
        "source": {
          "imageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "OBJECT_LOCALIZATION"
        },
      ]
    }
  ]
}

Untuk mengirim permintaan Anda, pilih salah satu opsi berikut:

curl

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Simpan isi permintaan dalam file bernama request.json, dan jalankan perintah berikut:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Jika permintaan berhasil, server akan menampilkan kode status HTTP 200 OK dan respons dalam format JSON.

Respons:

Go

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Go di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Go API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.


// localizeObjects gets objects and bounding boxes from the Vision API for an image at the given file path.
func localizeObjectsURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	annotations, err := client.LocalizeObjects(ctx, image, nil)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No objects found.")
		return nil
	}

	fmt.Fprintln(w, "Objects:")
	for _, annotation := range annotations {
		fmt.Fprintln(w, annotation.Name)
		fmt.Fprintln(w, annotation.Score)

		for _, v := range annotation.BoundingPoly.NormalizedVertices {
			fmt.Fprintf(w, "(%f,%f)\n", v.X, v.Y)
		}
	}

	return nil
}

Java

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Java di Panduan Memulai Vision API Menggunakan Library Klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Java Vision API.

/**
 * Detects localized objects in a remote image on Google Cloud Storage.
 *
 * @param gcsPath The path to the remote file on Google Cloud Storage to detect localized objects
 *     on.
 * @throws Exception on errors while closing the client.
 * @throws IOException on Input/Output errors.
 */
public static void detectLocalizedObjectsGcs(String gcsPath) throws IOException {
  List<AnnotateImageRequest> requests = new ArrayList<>();

  ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
  Image img = Image.newBuilder().setSource(imgSource).build();

  AnnotateImageRequest request =
      AnnotateImageRequest.newBuilder()
          .addFeatures(Feature.newBuilder().setType(Type.OBJECT_LOCALIZATION))
          .setImage(img)
          .build();
  requests.add(request);

  // Initialize client that will be used to send requests. This client only needs to be created
  // once, and can be reused for multiple requests. After completing all of your requests, call
  // the "close" method on the client to safely clean up any remaining background resources.
  try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
    // Perform the request
    BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
    List<AnnotateImageResponse> responses = response.getResponsesList();
    client.close();
    // Display the results
    for (AnnotateImageResponse res : responses) {
      for (LocalizedObjectAnnotation entity : res.getLocalizedObjectAnnotationsList()) {
        System.out.format("Object name: %s%n", entity.getName());
        System.out.format("Confidence: %s%n", entity.getScore());
        System.out.format("Normalized Vertices:%n");
        entity
            .getBoundingPoly()
            .getNormalizedVerticesList()
            .forEach(vertex -> System.out.format("- (%s, %s)%n", vertex.getX(), vertex.getY()));
      }
    }
  }
}

Node.js

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Node.js di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Node.js API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const gcsUri = `gs://bucket/bucketImage.png`;

const [result] = await client.objectLocalization(gcsUri);
const objects = result.localizedObjectAnnotations;
objects.forEach(object => {
  console.log(`Name: ${object.name}`);
  console.log(`Confidence: ${object.score}`);
  const veritices = object.boundingPoly.normalizedVertices;
  veritices.forEach(v => console.log(`x: ${v.x}, y:${v.y}`));
});

Python

Sebelum mencoba contoh ini, ikuti petunjuk penyiapan Python di Panduan memulai Vision menggunakan library klien. Untuk mengetahui informasi selengkapnya, lihat dokumentasi referensi Vision Python API.

Untuk melakukan autentikasi ke Vision, siapkan Kredensial Default Aplikasi. Untuk mengetahui informasi selengkapnya, lihat Menyiapkan autentikasi untuk lingkungan pengembangan lokal.

def localize_objects_uri(uri):
    """Localize objects in the image on Google Cloud Storage

    Args:
    uri: The path to the file in Google Cloud Storage (gs://...)
    """
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    image = vision.Image()
    image.source.image_uri = uri

    objects = client.object_localization(image=image).localized_object_annotations

    print(f"Number of objects found: {len(objects)}")
    for object_ in objects:
        print(f"\n{object_.name} (confidence: {object_.score})")
        print("Normalized bounding polygon vertices: ")
        for vertex in object_.bounding_poly.normalized_vertices:
            print(f" - ({vertex.x}, {vertex.y})")

gcloud

Untuk mendeteksi label dalam gambar, gunakan perintah gcloud ml vision detect-objects seperti ditunjukkan dalam contoh berikut:

gcloud ml vision detect-objects https://cloud.google.com/vision/docs/images/bicycle_example.png

Bahasa tambahan

C#: Ikuti Petunjuk penyiapan C# di halaman library klien, lalu kunjungi Dokumentasi referensi Vision untuk .NET.

PHP: Ikuti Petunjuk penyiapan PHP di halaman library klien, lalu buka Dokumentasi referensi Vision untuk PHP.

Ruby: Ikuti Petunjuk penyiapan Ruby di halaman library klien, lalu kunjungi Dokumentasi referensi Vision untuk Ruby.

Cobalah

Coba deteksi dan pelokalan objek dengan alat berikut. Anda dapat menggunakan gambar yang sudah ditentukan (https://cloud.google.com/vision/docs/images/bicycle_example.png) atau menentukan gambar Anda sendiri sebagai gantinya. Kirim permintaan dengan memilih Jalankan.

gambar tanpa kotak pembatas
Kredit gambar: Bogdan Dada di Unsplash.

Isi permintaan:

{
  "requests": [
    {
      "features": [
        {
          "maxResults": 10,
          "type": "OBJECT_LOCALIZATION"
        }
      ],
      "image": {
        "source": {
          "imageUri": "https://cloud.google.com/vision/docs/images/bicycle_example.png"
        }
      }
    }
  ]
}