Vision API 可透過物件定位功能,偵測及擷取圖片中的多個物件。
物件定位功能可辨識圖片中的多個物件,並為圖片中的每個物件提供 LocalizedObjectAnnotation。每個 LocalizedObjectAnnotation
都會識別物件的相關資訊、物件位置,以及包含物件的圖片區域矩形界線。
物件定位功能可識別圖片中的重要和次要物件。
物件資訊只會以英文傳回。Cloud Translation 可將英文標籤翻譯成各種其他語言。

舉例來說,API 會傳回前一張圖片中物件的下列資訊和邊界位置資料:
名稱 | mid | 分數 | 範圍 |
---|---|---|---|
自行車輪 | /m/01bqk0 | 0.89648587 | (0.32076266, 0.78941387), (0.43812272, 0.78941387), (0.43812272, 0.97331065), (0.32076266, 0.97331065) |
單車 | /m/0199g | 0.886761 | (0.312, 0.6616471)、(0.638353, 0.6616471)、(0.638353, 0.9705882)、(0.312, 0.9705882) |
自行車輪 | /m/01bqk0 | 0.6345275 | (0.5125398, 0.760708)、(0.6256646, 0.760708)、(0.6256646, 0.94601655)、(0.5125398, 0.94601655) |
相框 | /m/06z37_ | 0.6207608 | (0.79177403, 0.16160682), (0.97047985, 0.16160682), (0.97047985, 0.31348917), (0.79177403, 0.31348917) |
輪胎 | /m/0h9mv | 0.55886006 | (0.32076266, 0.78941387)、(0.43812272, 0.78941387)、(0.43812272, 0.97331065)、(0.32076266, 0.97331065) |
門 | /m/02dgv | 0.5160098 | (0.77569866, 0.37104446)、(0.9412425, 0.37104446)、(0.9412425, 0.81507325)、(0.77569866, 0.81507325) |
mid 包含對應於標籤 Google 知識圖譜項目的機器建立識別碼 (MID)。如要瞭解如何檢查 mid 值,請參閱 Google 知識圖譜搜尋 API 說明文件。
歡迎試用
如果您未曾使用過 Google Cloud,歡迎建立帳戶,親自體驗實際使用 Cloud Vision API 的成效。新客戶可以獲得價值 $300 美元的免費抵免額,可用於執行、測試及部署工作負載。
免費試用 Cloud Vision API物件本地化要求
設定 Google Cloud 專案和驗證
如果您尚未建立 Google Cloud 專案,請立即建立。展開這個部分即可查看操作說明。
- Sign in to your Google Cloud account. If you're new to Google Cloud, create an account to evaluate how our products perform in real-world scenarios. New customers also get $300 in free credits to run, test, and deploy workloads.
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator
(
roles/resourcemanager.projectCreator
), which contains theresourcemanager.projects.create
permission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin
), which contains theserviceusage.services.enable
permission. Learn how to grant roles. -
Install the Google Cloud CLI.
-
如果您使用外部識別資訊提供者 (IdP),請先 使用聯合身分登入 gcloud CLI。
-
如要初始化 gcloud CLI,請執行下列指令:
gcloud init
-
In the Google Cloud console, on the project selector page, select or create a Google Cloud project.
Roles required to select or create a project
- Select a project: Selecting a project doesn't require a specific IAM role—you can select any project that you've been granted a role on.
-
Create a project: To create a project, you need the Project Creator
(
roles/resourcemanager.projectCreator
), which contains theresourcemanager.projects.create
permission. Learn how to grant roles.
-
Verify that billing is enabled for your Google Cloud project.
-
Enable the Vision API.
Roles required to enable APIs
To enable APIs, you need the Service Usage Admin IAM role (
roles/serviceusage.serviceUsageAdmin
), which contains theserviceusage.services.enable
permission. Learn how to grant roles. -
Install the Google Cloud CLI.
-
如果您使用外部識別資訊提供者 (IdP),請先 使用聯合身分登入 gcloud CLI。
-
如要初始化 gcloud CLI,請執行下列指令:
gcloud init
- BASE64_ENCODED_IMAGE:二進位圖片資料的 Base64 表示法 (ASCII 字串)。這個字串應類似下列字串:
/9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
- RESULTS_INT:(選填) 要傳回的結果整數值。如果省略
"maxResults"
欄位及其值,API 會傳回預設值,也就是 10 個結果。這個欄位不適用於下列特徵類型:TEXT_DETECTION
、DOCUMENT_TEXT_DETECTION
或CROP_HINTS
。 - PROJECT_ID:您的 Google Cloud 專案 ID。
- CLOUD_STORAGE_IMAGE_URI:Cloud Storage 值區中有效圖片檔案的路徑。您必須至少擁有檔案的讀取權限。
範例:
https://cloud.google.com/vision/docs/images/bicycle_example.png
- RESULTS_INT:(選填) 要傳回的結果整數值。如果省略
"maxResults"
欄位及其值,API 會傳回預設值,也就是 10 個結果。這個欄位不適用於下列特徵類型:TEXT_DETECTION
、DOCUMENT_TEXT_DETECTION
或CROP_HINTS
。 - PROJECT_ID:您的 Google Cloud 專案 ID。
偵測本機圖片中的物件
您可以使用 Vision API 對本機圖片檔執行特徵偵測。
如果是 REST 要求,請在要求主體中,以 base64 編碼字串的形式傳送圖片檔案內容。
如果是 gcloud
和用戶端程式庫要求,請在要求中指定本機圖片的路徑。
REST
使用任何要求資料之前,請先替換以下項目:
HTTP 方法和網址:
POST https://vision.googleapis.com/v1/images:annotate
JSON 要求主體:
{ "requests": [ { "image": { "content": "BASE64_ENCODED_IMAGE" }, "features": [ { "maxResults": RESULTS_INT, "type": "OBJECT_LOCALIZATION" }, ] } ] }
如要傳送要求,請選擇以下其中一個選項:
curl
將要求主體儲存在名為 request.json
的檔案中,然後執行下列指令:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
將要求主體儲存在名為 request.json
的檔案中,然後執行下列指令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
如果要求成功,伺服器會傳回 200 OK
HTTP 狀態碼與 JSON 格式的回應。
回覆:
回應
{ "responses": [ { "localizedObjectAnnotations": [ { "mid": "/m/01bqk0", "name": "Bicycle wheel", "score": 0.89648587, "boundingPoly": { "normalizedVertices": [ { "x": 0.32076266, "y": 0.78941387 }, { "x": 0.43812272, "y": 0.78941387 }, { "x": 0.43812272, "y": 0.97331065 }, { "x": 0.32076266, "y": 0.97331065 } ] } }, { "mid": "/m/0199g", "name": "Bicycle", "score": 0.886761, "boundingPoly": { "normalizedVertices": [ { "x": 0.312, "y": 0.6616471 }, { "x": 0.638353, "y": 0.6616471 }, { "x": 0.638353, "y": 0.9705882 }, { "x": 0.312, "y": 0.9705882 } ] } }, { "mid": "/m/01bqk0", "name": "Bicycle wheel", "score": 0.6345275, "boundingPoly": { "normalizedVertices": [ { "x": 0.5125398, "y": 0.760708 }, { "x": 0.6256646, "y": 0.760708 }, { "x": 0.6256646, "y": 0.94601655 }, { "x": 0.5125398, "y": 0.94601655 } ] } }, { "mid": "/m/06z37_", "name": "Picture frame", "score": 0.6207608, "boundingPoly": { "normalizedVertices": [ { "x": 0.79177403, "y": 0.16160682 }, { "x": 0.97047985, "y": 0.16160682 }, { "x": 0.97047985, "y": 0.31348917 }, { "x": 0.79177403, "y": 0.31348917 } ] } }, { "mid": "/m/0h9mv", "name": "Tire", "score": 0.55886006, "boundingPoly": { "normalizedVertices": [ { "x": 0.32076266, "y": 0.78941387 }, { "x": 0.43812272, "y": 0.78941387 }, { "x": 0.43812272, "y": 0.97331065 }, { "x": 0.32076266, "y": 0.97331065 } ] } }, { "mid": "/m/02dgv", "name": "Door", "score": 0.5160098, "boundingPoly": { "normalizedVertices": [ { "x": 0.77569866, "y": 0.37104446 }, { "x": 0.9412425, "y": 0.37104446 }, { "x": 0.9412425, "y": 0.81507325 }, { "x": 0.77569866, "y": 0.81507325 } ] } } ] } ] }
Go
在試用這個範例之前,請先按照Go「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Go API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// localizeObjects gets objects and bounding boxes from the Vision API for an image at the given file path.
func localizeObjects(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
f, err := os.Open(file)
if err != nil {
return err
}
defer f.Close()
image, err := vision.NewImageFromReader(f)
if err != nil {
return err
}
annotations, err := client.LocalizeObjects(ctx, image, nil)
if err != nil {
return err
}
if len(annotations) == 0 {
fmt.Fprintln(w, "No objects found.")
return nil
}
fmt.Fprintln(w, "Objects:")
for _, annotation := range annotations {
fmt.Fprintln(w, annotation.Name)
fmt.Fprintln(w, annotation.Score)
for _, v := range annotation.BoundingPoly.NormalizedVertices {
fmt.Fprintf(w, "(%f,%f)\n", v.X, v.Y)
}
}
return nil
}
Java
在試用這個範例之前,請先按照使用用戶端程式庫的 Vision API 快速入門導覽課程中的 Java 設定操作說明進行操作。詳情請參閱 Vision API Java 參考說明文件。
/**
* Detects localized objects in the specified local image.
*
* @param filePath The path to the file to perform localized object detection on.
* @throws Exception on errors while closing the client.
* @throws IOException on Input/Output errors.
*/
public static void detectLocalizedObjects(String filePath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));
Image img = Image.newBuilder().setContent(imgBytes).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder()
.addFeatures(Feature.newBuilder().setType(Type.OBJECT_LOCALIZATION))
.setImage(img)
.build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
// Perform the request
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
// Display the results
for (AnnotateImageResponse res : responses) {
for (LocalizedObjectAnnotation entity : res.getLocalizedObjectAnnotationsList()) {
System.out.format("Object name: %s%n", entity.getName());
System.out.format("Confidence: %s%n", entity.getScore());
System.out.format("Normalized Vertices:%n");
entity
.getBoundingPoly()
.getNormalizedVerticesList()
.forEach(vertex -> System.out.format("- (%s, %s)%n", vertex.getX(), vertex.getY()));
}
}
}
}
Node.js
在試用這個範例之前,請先按照Node.js「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Node.js API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');
const fs = require('fs');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const fileName = `/path/to/localImage.png`;
const request = {
image: {content: fs.readFileSync(fileName)},
};
const [result] = await client.objectLocalization(request);
const objects = result.localizedObjectAnnotations;
objects.forEach(object => {
console.log(`Name: ${object.name}`);
console.log(`Confidence: ${object.score}`);
const vertices = object.boundingPoly.normalizedVertices;
vertices.forEach(v => console.log(`x: ${v.x}, y:${v.y}`));
});
Python
在試用這個範例之前,請先按照Python「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Python API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
def localize_objects(path):
"""Localize objects in the local image.
Args:
path: The path to the local file.
"""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
with open(path, "rb") as image_file:
content = image_file.read()
image = vision.Image(content=content)
objects = client.object_localization(image=image).localized_object_annotations
print(f"Number of objects found: {len(objects)}")
for object_ in objects:
print(f"\n{object_.name} (confidence: {object_.score})")
print("Normalized bounding polygon vertices: ")
for vertex in object_.bounding_poly.normalized_vertices:
print(f" - ({vertex.x}, {vertex.y})")
其他語言
C#: 請按照用戶端程式庫頁面上的C# 設定說明操作, 然後前往 .NET 適用的 Vision 參考說明文件。
PHP: 請按照用戶端程式庫頁面上的 PHP 設定說明操作, 然後前往 PHP 適用的 Vision 參考文件。
Ruby: 請按照用戶端程式庫頁面的 Ruby 設定說明操作, 然後前往 Ruby 適用的 Vision 參考說明文件。
偵測遠端圖片中的物件
您可以透過 Vision API,對位於 Cloud Storage 或網路上的遠端圖片檔案執行特徵偵測。如要傳送遠端檔案要求,請在要求內文中指定檔案的網頁網址或 Cloud Storage URI。
REST
使用任何要求資料之前,請先替換以下項目:
HTTP 方法和網址:
POST https://vision.googleapis.com/v1/images:annotate
JSON 要求主體:
{ "requests": [ { "image": { "source": { "imageUri": "CLOUD_STORAGE_IMAGE_URI" } }, "features": [ { "maxResults": RESULTS_INT, "type": "OBJECT_LOCALIZATION" }, ] } ] }
如要傳送要求,請選擇以下其中一個選項:
curl
將要求主體儲存在名為 request.json
的檔案中,然後執行下列指令:
curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"
PowerShell
將要求主體儲存在名為 request.json
的檔案中,然後執行下列指令:
$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }
Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content
如果要求成功,伺服器會傳回 200 OK
HTTP 狀態碼與 JSON 格式的回應。
回覆:
回應
{ "responses": [ { "localizedObjectAnnotations": [ { "mid": "/m/01bqk0", "name": "Bicycle wheel", "score": 0.89648587, "boundingPoly": { "normalizedVertices": [ { "x": 0.32076266, "y": 0.78941387 }, { "x": 0.43812272, "y": 0.78941387 }, { "x": 0.43812272, "y": 0.97331065 }, { "x": 0.32076266, "y": 0.97331065 } ] } }, { "mid": "/m/0199g", "name": "Bicycle", "score": 0.886761, "boundingPoly": { "normalizedVertices": [ { "x": 0.312, "y": 0.6616471 }, { "x": 0.638353, "y": 0.6616471 }, { "x": 0.638353, "y": 0.9705882 }, { "x": 0.312, "y": 0.9705882 } ] } }, { "mid": "/m/01bqk0", "name": "Bicycle wheel", "score": 0.6345275, "boundingPoly": { "normalizedVertices": [ { "x": 0.5125398, "y": 0.760708 }, { "x": 0.6256646, "y": 0.760708 }, { "x": 0.6256646, "y": 0.94601655 }, { "x": 0.5125398, "y": 0.94601655 } ] } }, { "mid": "/m/06z37_", "name": "Picture frame", "score": 0.6207608, "boundingPoly": { "normalizedVertices": [ { "x": 0.79177403, "y": 0.16160682 }, { "x": 0.97047985, "y": 0.16160682 }, { "x": 0.97047985, "y": 0.31348917 }, { "x": 0.79177403, "y": 0.31348917 } ] } }, { "mid": "/m/0h9mv", "name": "Tire", "score": 0.55886006, "boundingPoly": { "normalizedVertices": [ { "x": 0.32076266, "y": 0.78941387 }, { "x": 0.43812272, "y": 0.78941387 }, { "x": 0.43812272, "y": 0.97331065 }, { "x": 0.32076266, "y": 0.97331065 } ] } }, { "mid": "/m/02dgv", "name": "Door", "score": 0.5160098, "boundingPoly": { "normalizedVertices": [ { "x": 0.77569866, "y": 0.37104446 }, { "x": 0.9412425, "y": 0.37104446 }, { "x": 0.9412425, "y": 0.81507325 }, { "x": 0.77569866, "y": 0.81507325 } ] } } ] } ] }
Go
在試用這個範例之前,請先按照Go「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Go API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// localizeObjects gets objects and bounding boxes from the Vision API for an image at the given file path.
func localizeObjectsURI(w io.Writer, file string) error {
ctx := context.Background()
client, err := vision.NewImageAnnotatorClient(ctx)
if err != nil {
return err
}
image := vision.NewImageFromURI(file)
annotations, err := client.LocalizeObjects(ctx, image, nil)
if err != nil {
return err
}
if len(annotations) == 0 {
fmt.Fprintln(w, "No objects found.")
return nil
}
fmt.Fprintln(w, "Objects:")
for _, annotation := range annotations {
fmt.Fprintln(w, annotation.Name)
fmt.Fprintln(w, annotation.Score)
for _, v := range annotation.BoundingPoly.NormalizedVertices {
fmt.Fprintf(w, "(%f,%f)\n", v.X, v.Y)
}
}
return nil
}
Java
在試用這個範例之前,請先按照使用用戶端程式庫的 Vision API 快速入門導覽課程中的 Java 設定操作說明進行操作。詳情請參閱 Vision API Java 參考說明文件。
/**
* Detects localized objects in a remote image on Google Cloud Storage.
*
* @param gcsPath The path to the remote file on Google Cloud Storage to detect localized objects
* on.
* @throws Exception on errors while closing the client.
* @throws IOException on Input/Output errors.
*/
public static void detectLocalizedObjectsGcs(String gcsPath) throws IOException {
List<AnnotateImageRequest> requests = new ArrayList<>();
ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
Image img = Image.newBuilder().setSource(imgSource).build();
AnnotateImageRequest request =
AnnotateImageRequest.newBuilder()
.addFeatures(Feature.newBuilder().setType(Type.OBJECT_LOCALIZATION))
.setImage(img)
.build();
requests.add(request);
// Initialize client that will be used to send requests. This client only needs to be created
// once, and can be reused for multiple requests. After completing all of your requests, call
// the "close" method on the client to safely clean up any remaining background resources.
try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
// Perform the request
BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
List<AnnotateImageResponse> responses = response.getResponsesList();
client.close();
// Display the results
for (AnnotateImageResponse res : responses) {
for (LocalizedObjectAnnotation entity : res.getLocalizedObjectAnnotationsList()) {
System.out.format("Object name: %s%n", entity.getName());
System.out.format("Confidence: %s%n", entity.getScore());
System.out.format("Normalized Vertices:%n");
entity
.getBoundingPoly()
.getNormalizedVerticesList()
.forEach(vertex -> System.out.format("- (%s, %s)%n", vertex.getX(), vertex.getY()));
}
}
}
}
Node.js
在試用這個範例之前,請先按照Node.js「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Node.js API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');
// Creates a client
const client = new vision.ImageAnnotatorClient();
/**
* TODO(developer): Uncomment the following line before running the sample.
*/
// const gcsUri = `gs://bucket/bucketImage.png`;
const [result] = await client.objectLocalization(gcsUri);
const objects = result.localizedObjectAnnotations;
objects.forEach(object => {
console.log(`Name: ${object.name}`);
console.log(`Confidence: ${object.score}`);
const veritices = object.boundingPoly.normalizedVertices;
veritices.forEach(v => console.log(`x: ${v.x}, y:${v.y}`));
});
Python
在試用這個範例之前,請先按照Python「使用用戶端程式庫的 Vision 快速入門導覽課程」中的設定說明操作。詳情請參閱 Vision Python API 參考說明文件。
如要向 Vision 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。
def localize_objects_uri(uri):
"""Localize objects in the image on Google Cloud Storage
Args:
uri: The path to the file in Google Cloud Storage (gs://...)
"""
from google.cloud import vision
client = vision.ImageAnnotatorClient()
image = vision.Image()
image.source.image_uri = uri
objects = client.object_localization(image=image).localized_object_annotations
print(f"Number of objects found: {len(objects)}")
for object_ in objects:
print(f"\n{object_.name} (confidence: {object_.score})")
print("Normalized bounding polygon vertices: ")
for vertex in object_.bounding_poly.normalized_vertices:
print(f" - ({vertex.x}, {vertex.y})")
gcloud
如要在圖片中偵測標籤,請使用 gcloud ml vision detect-objects
指令,如下列範例所示:
gcloud ml vision detect-objects https://cloud.google.com/vision/docs/images/bicycle_example.png
其他語言
C#: 請按照用戶端程式庫頁面上的C# 設定說明操作, 然後前往 .NET 適用的 Vision 參考說明文件。
PHP: 請按照用戶端程式庫頁面上的 PHP 設定說明操作, 然後前往 PHP 適用的 Vision 參考文件。
Ruby: 請按照用戶端程式庫頁面的 Ruby 設定說明操作, 然後前往 Ruby 適用的 Vision 參考說明文件。
試試看
請使用下列工具試用物件偵測和定位功能。你可以使用已指定的圖片 (https://cloud.google.com/vision/docs/images/bicycle_example.png
),也可以改為指定自己的圖片。選取「Execute」,傳送要求。

要求主體:
{ "requests": [ { "features": [ { "maxResults": 10, "type": "OBJECT_LOCALIZATION" } ], "image": { "source": { "imageUri": "https://cloud.google.com/vision/docs/images/bicycle_example.png" } } } ] }