检测标签

Vision API 可以检测和提取与图片内多组类别的实体相关的信息。

标签可以用来识别普通物体、地理位置、活动、动物品种和商品等。如果您需要有针对性的自定义标签,则可以使用 Cloud AutoML Vision 训练自定义机器学习模型,以便对图片进行分类。

标签仅以英文形式返回。Cloud Translation API 可以将英文标签翻译成多种其他语言

世田谷区街道图片
图片来源: Unsplash 用户 Alex Knight

例如,上图可能会返回下面的一列标签:

说明 分数
街道 0.872
快照 0.852
0.848
夜间 0.804
小巷 0.713

标签检测请求

设置您的 Google Cloud 项目和身份验证

检测本地图片中的标签

您可以使用 Vision API 对本地图片文件执行特征检测。

对于 REST 请求,请将图片文件的内容作为 base64 编码的字符串在请求正文中发送。

对于 gcloud 和客户端库请求,请在请求中指定本地图片的路径。

REST

在使用任何请求数据之前,请先进行以下替换:

  • BASE64_ENCODED_IMAGE:二进制图片数据的 base64 表示(ASCII 字符串)。此字符串应类似于以下字符串:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    如需了解详情,请参阅 base64 编码主题。
  • RESULTS_INT:(可选)要返回的结果的整数值。如果您省略 "maxResults" 字段及其值,则 API 会默认返回 10 个结果。此字段不适用于以下功能类型:TEXT_DETECTIONDOCUMENT_TEXT_DETECTIONCROP_HINTS
  • PROJECT_ID:您的 Google Cloud 项目 ID。

HTTP 方法和网址:

POST https://vision.googleapis.com/v1/images:annotate

请求 JSON 正文:

{
  "requests": [
    {
      "image": {
        "content": "BASE64_ENCODED_IMAGE"
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "LABEL_DETECTION"
        }
      ]
    }
  ]
}

如需发送请求,请选择以下方式之一:

curl

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

如果请求成功,服务器将返回一个 200 OK HTTP 状态代码以及 JSON 格式的响应。

LABEL_DETECTION 响应包含已检测到的标签、标签的分数、话题性和不透明的标签 ID,其中:

  • mid -(如果存在)包含一个由机器生成且与该实体的 Google 知识图谱条目相对应的标识符 (MID)。请注意,mid 值在不同语言中各不相同,因此,您可以使用这些值将来自不同语言的实体关联在一起。如需检查 MID 值,请参阅 Google Knowledge Graph API 文档。
  • description - 标签说明。
  • score - 置信度分数,范围为 0(零置信度)到 1(极高置信度)。
  • topicality - ICA(图片内容注释)标签与图片的相关性。它衡量标签对于整个页面上下文的重要程度。


    {
  "responses": [
    {
      "labelAnnotations": [
        {
          "mid": "/m/01c8br",
          "description": "Street",
          "score": 0.87294734,
          "topicality": 0.87294734
        },
        {
          "mid": "/m/06pg22",
          "description": "Snapshot",
          "score": 0.8523099,
          "topicality": 0.8523099
        },
        {
          "mid": "/m/0dx1j",
          "description": "Town",
          "score": 0.8481104,
          "topicality": 0.8481104
        },
        {
          "mid": "/m/01d74z",
          "description": "Night",
          "score": 0.80408716,
          "topicality": 0.80408716
        },
        {
          "mid": "/m/01lwf0",
          "description": "Alley",
          "score": 0.7133322,
          "topicality": 0.7133322
        }
      ]
    }
  ]
}

Go

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Go 设置说明进行操作。 如需了解详情,请参阅 Vision Go API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


// detectLabels gets labels from the Vision API for an image at the given file path.
func detectLabels(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.DetectLabels(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No labels found.")
	} else {
		fmt.Fprintln(w, "Labels:")
		for _, annotation := range annotations {
			fmt.Fprintln(w, annotation.Description)
		}
	}

	return nil
}

Java

在试用此示例之前,请按照Vision API 快速入门:使用客户端库中的 Java 设置说明进行操作。如需了解详情,请参阅 Vision API Java 参考文档


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectLabels {

  public static void detectLabels() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectLabels(filePath);
  }

  // Detects labels in the specified local image.
  public static void detectLabels(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.LABEL_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getLabelAnnotationsList()) {
          annotation
              .getAllFields()
              .forEach((k, v) -> System.out.format("%s : %s%n", k, v.toString()));
        }
      }
    }
  }
}

Node.js

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Node.js 设置说明进行操作。 如需了解详情,请参阅 Vision Node.js API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud client library
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Performs label detection on the local file
const [result] = await client.labelDetection(fileName);
const labels = result.labelAnnotations;
console.log('Labels:');
labels.forEach(label => console.log(label.description));

Python

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Python 设置说明进行操作。 如需了解详情,请参阅 Vision Python API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

def detect_labels(path):
    """Detects labels in the file."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    with open(path, "rb") as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.label_detection(image=image)
    labels = response.label_annotations
    print("Labels:")

    for label in labels:
        print(label.description)

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

其他语言

C#: 请按照客户端库页面上的 C# 设置说明操作,然后访问 .NET 版 Vision 参考文档。

PHP: 请按照客户端库页面上的 PHP 设置说明操作,然后访问 PHP 版 Vision 参考文档。

Ruby 版: 请按照客户端库页面上的 Ruby 设置说明操作,然后访问 Ruby 版 Vision 参考文档。

检测远程图片中的标签

您可以使用 Vision API 对位于 Cloud Storage 或网络中的远程图片文件执行特征检测。如需发送远程文件请求,请在请求正文中指定文件的网址或 Cloud Storage URI。

REST

在使用任何请求数据之前,请先进行以下替换:

  • CLOUD_STORAGE_IMAGE_URI:Cloud Storage 存储桶中有效图片文件的路径。您必须至少拥有该文件的读取权限。 示例:
    • gs://cloud-samples-data/vision/label/setagaya.jpeg
  • RESULTS_INT:(可选)要返回的结果的整数值。如果您省略 "maxResults" 字段及其值,则 API 会默认返回 10 个结果。此字段不适用于以下功能类型:TEXT_DETECTIONDOCUMENT_TEXT_DETECTIONCROP_HINTS
  • PROJECT_ID:您的 Google Cloud 项目 ID。

HTTP 方法和网址:

POST https://vision.googleapis.com/v1/images:annotate

请求 JSON 正文:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "LABEL_DETECTION"
        },
      ]
    }
  ]
}

如需发送请求,请选择以下方式之一:

curl

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

将请求正文保存在名为 request.json 的文件中,然后执行以下命令:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

如果请求成功,服务器将返回一个 200 OK HTTP 状态代码以及 JSON 格式的响应。

LABEL_DETECTION 响应包含已检测到的标签、标签的分数、话题性和不透明的标签 ID,其中:

  • mid -(如果存在)包含一个由机器生成且与该实体的 Google 知识图谱条目相对应的标识符 (MID)。请注意,mid 值在不同语言中各不相同,因此,您可以使用这些值将来自不同语言的实体关联在一起。如需检查 MID 值,请参阅 Google Knowledge Graph API 文档。
  • description - 标签说明。
  • score - 置信度分数,范围为 0(零置信度)到 1(极高置信度)。
  • topicality - 图片内容注释 (ICA) 标签与图片的相关性。它衡量标签对于整个页面上下文的重要程度。


    {
  "responses": [
    {
      "labelAnnotations": [
        {
          "mid": "/m/01c8br",
          "description": "Street",
          "score": 0.87294734,
          "topicality": 0.87294734
        },
        {
          "mid": "/m/06pg22",
          "description": "Snapshot",
          "score": 0.8523099,
          "topicality": 0.8523099
        },
        {
          "mid": "/m/0dx1j",
          "description": "Town",
          "score": 0.8481104,
          "topicality": 0.8481104
        },
        {
          "mid": "/m/01d74z",
          "description": "Night",
          "score": 0.80408716,
          "topicality": 0.80408716
        },
        {
          "mid": "/m/01lwf0",
          "description": "Alley",
          "score": 0.7133322,
          "topicality": 0.7133322
        }
      ]
    }
  ]
}

Go

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Go 设置说明进行操作。 如需了解详情,请参阅 Vision Go API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证


// detectLabels gets labels from the Vision API for an image at the given file path.
func detectLabelsURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	annotations, err := client.DetectLabels(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No labels found.")
	} else {
		fmt.Fprintln(w, "Labels:")
		for _, annotation := range annotations {
			fmt.Fprintln(w, annotation.Description)
		}
	}

	return nil
}

Java

在试用此示例之前,请按照Vision API 快速入门:使用客户端库中的 Java 设置说明进行操作。如需了解详情,请参阅 Vision API Java 参考文档


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectLabelsGcs {

  public static void detectLabelsGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectLabelsGcs(filePath);
  }

  // Detects labels in the specified remote image on Google Cloud Storage.
  public static void detectLabelsGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.LABEL_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getLabelAnnotationsList()) {
          annotation
              .getAllFields()
              .forEach((k, v) -> System.out.format("%s : %s%n", k, v.toString()));
        }
      }
    }
  }
}

Node.js

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Node.js 设置说明进行操作。 如需了解详情,请参阅 Vision Node.js API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs label detection on the gcs file
const [result] = await client.labelDetection(
  `gs://${bucketName}/${fileName}`
);
const labels = result.labelAnnotations;
console.log('Labels:');
labels.forEach(label => console.log(label.description));

Python

试用此示例之前,请按照《Vision 快速入门:使用客户端库》中的 Python 设置说明进行操作。 如需了解详情,请参阅 Vision Python API 参考文档

如需向 Vision 进行身份验证,请设置应用默认凭据。 如需了解详情,请参阅为本地开发环境设置身份验证

def detect_labels_uri(uri):
    """Detects labels in the file located in Google Cloud Storage or on the
    Web."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    response = client.label_detection(image=image)
    labels = response.label_annotations
    print("Labels:")

    for label in labels:
        print(label.description)

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

gcloud

如需检测图片中的标签,请使用 gcloud ml vision detect-labels 命令,如以下示例所示:

gcloud ml vision detect-labels gs://cloud-samples-data/vision/label/setagaya.jpeg

其他语言

C#: 请按照客户端库页面上的 C# 设置说明操作,然后访问 .NET 版 Vision 参考文档。

PHP: 请按照客户端库页面上的 PHP 设置说明操作,然后访问 PHP 版 Vision 参考文档。

Ruby 版: 请按照客户端库页面上的 Ruby 设置说明操作,然后访问 Ruby 版 Vision 参考文档。

试用

请尝试下面的标签检测。您可以使用已指定的图片 (gs://cloud-samples-data/vision/label/setagaya.jpeg) 或指定您自己的图片。选择执行即可发送请求。

世田谷区街道图片
图片来源: Unsplash 用户 Alex Knight

请求正文:

{
  "requests": [
    {
      "features": [
        {
          "maxResults": 5,
          "type": "LABEL_DETECTION"
        }
      ],
      "image": {
        "source": {
          "imageUri": "gs://cloud-samples-data/vision/label/setagaya.jpeg"
        }
      }
    }
  ]
}