Detecta puntos de referencia

La detección de puntos de referencia detecta estructuras populares naturales y artificiales en una imagen.

Imagen de la Catedral de San Basilio
Crédito de la imagen: Nikolay Vorobyev en Unsplash (anotaciones agregadas).

Solicitudes de detección de puntos de referencia

Configura el proyecto de Google Cloud y la autenticación

Detecta puntos de referencia en una imagen local

Puedes usar la API de Vision para realizar la detección de características en un archivo de imagen local.

Para las solicitudes de REST, envía el contenido del archivo de imagen como una string codificada en base64 en el cuerpo de tu solicitud.

Para las solicitudes de biblioteca cliente y gcloud, especifica la ruta a una imagen local en tu solicitud.

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • BASE64_ENCODED_IMAGE: Es la representación en base64 (string ASCII) de los datos de la imagen binaria. Esta string debería ser similar a la siguiente:
    • /9j/4QAYRXhpZgAA...9tAVx/zDQDlGxn//2Q==
    Visita Codificación en base64 para obtener más información.
  • RESULTS_INT: Un valor de número entero de resultados que se mostrarán (opcional). Si omites el campo "maxResults" y su valor, la API muestra el valor predeterminado de 10 resultados. Este campo no se aplica a los siguientes tipos de funciones: TEXT_DETECTION, DOCUMENT_TEXT_DETECTION o CROP_HINTS.
  • PROJECT_ID es el ID del proyecto de Google Cloud.

Método HTTP y URL:

POST https://vision.googleapis.com/v1/images:annotate

Cuerpo JSON de la solicitud:

{
  "requests": [
    {
      "image": {
        "content": "BASE64_ENCODED_IMAGE"
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "LANDMARK_DETECTION"
        },
      ]
    }
  ]
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la solicitud se completa de forma correcta, el servidor muestra un código de estado HTTP 200 OK y la respuesta en formato JSON.

Respuesta:

{
  "responses": [
    {
      "landmarkAnnotations": [
        {
          "mid": "/m/014lft",
          "description": "Saint Basil's Cathedral",
          "score": 0.7840959,
          "boundingPoly": {
            "vertices": [
              {
                "x": 812,
                "y": 1058
              },
              {
                "x": 2389,
                "y": 1058
              },
              {
                "x": 2389,
                "y": 3052
              },
              {
                "x": 812,
                "y": 3052
              }
            ]
          },
          "locations": [
            {
              "latLng": {
                "latitude": 55.752912,
                "longitude": 37.622315883636475
              }
            }
          ]
        }
      ]
    }
  ]
}

Go

Antes de probar este código de muestra, sigue las instrucciones de configuración para Go que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Go.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


// detectLandmarks gets landmarks from the Vision API for an image at the given file path.
func detectLandmarks(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	f, err := os.Open(file)
	if err != nil {
		return err
	}
	defer f.Close()

	image, err := vision.NewImageFromReader(f)
	if err != nil {
		return err
	}
	annotations, err := client.DetectLandmarks(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No landmarks found.")
	} else {
		fmt.Fprintln(w, "Landmarks:")
		for _, annotation := range annotations {
			fmt.Fprintln(w, annotation.Description)
		}
	}

	return nil
}

Java

Antes de probar este código de muestra, sigue las instrucciones de configuración para Java que se encuentran la Guía de inicio rápido de la API de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Java.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.LocationInfo;
import com.google.protobuf.ByteString;
import java.io.FileInputStream;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectLandmarks {
  public static void detectLandmarks() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "path/to/your/image/file.jpg";
    detectLandmarks(filePath);
  }

  // Detects landmarks in the specified local image.
  public static void detectLandmarks(String filePath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();
    ByteString imgBytes = ByteString.readFrom(new FileInputStream(filePath));

    Image img = Image.newBuilder().setContent(imgBytes).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.LANDMARK_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getLandmarkAnnotationsList()) {
          LocationInfo info = annotation.getLocationsList().listIterator().next();
          System.out.format("Landmark: %s%n %s%n", annotation.getDescription(), info.getLatLng());
        }
      }
    }
  }
}

Node.js

Antes de probar este código de muestra, sigue las instrucciones de configuración para Node.js que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Node.js.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const fileName = 'Local image file, e.g. /path/to/image.png';

// Performs landmark detection on the local file
const [result] = await client.landmarkDetection(fileName);
const landmarks = result.landmarkAnnotations;
console.log('Landmarks:');
landmarks.forEach(landmark => console.log(landmark));

Python

Antes de probar este código de muestra, sigue las instrucciones de configuración para Python que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Python.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

def detect_landmarks(path):
    """Detects landmarks in the file."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()

    with open(path, "rb") as image_file:
        content = image_file.read()

    image = vision.Image(content=content)

    response = client.landmark_detection(image=image)
    landmarks = response.landmark_annotations
    print("Landmarks:")

    for landmark in landmarks:
        print(landmark.description)
        for location in landmark.locations:
            lat_lng = location.lat_lng
            print(f"Latitude {lat_lng.latitude}")
            print(f"Longitude {lat_lng.longitude}")

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

Idiomas adicionales

C#: sigue lasinstrucciones de configuración de C# en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para .NET.

PHP: sigue las instrucciones de configuración de PHP en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para PHP.

Ruby: sigue las instrucciones de configuración de Ruby en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para Ruby.

Detecta puntos de referencia en una imagen remota

Puedes usar la API de Vision para realizar funciones de detección de características en un archivo de imagen remoto ubicado en Cloud Storage o en la Web. Para enviar una solicitud de archivo remoto, especifica la URL web del archivo o el URI de Cloud Storage en el cuerpo de la solicitud.

REST

Antes de usar cualquiera de los datos de solicitud a continuación, realiza los siguientes reemplazos:

  • CLOUD_STORAGE_IMAGE_URI: La ruta a un archivo de imagen válido en un depósito de Cloud Storage. Como mínimo, debes tener privilegios de lectura en el archivo. Ejemplo:
    • gs://cloud-samples-data/vision/landmark/st_basils.jpeg
  • RESULTS_INT: Un valor de número entero de resultados que se mostrarán (opcional). Si omites el campo "maxResults" y su valor, la API muestra el valor predeterminado de 10 resultados. Este campo no se aplica a los siguientes tipos de funciones: TEXT_DETECTION, DOCUMENT_TEXT_DETECTION o CROP_HINTS.
  • PROJECT_ID es el ID del proyecto de Google Cloud.

Método HTTP y URL:

POST https://vision.googleapis.com/v1/images:annotate

Cuerpo JSON de la solicitud:

{
  "requests": [
    {
      "image": {
        "source": {
          "gcsImageUri": "CLOUD_STORAGE_IMAGE_URI"
        }
      },
      "features": [
        {
          "maxResults": RESULTS_INT,
          "type": "LANDMARK_DETECTION"
        },
      ]
    }
  ]
}

Para enviar tu solicitud, elige una de estas opciones:

curl

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: PROJECT_ID" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://vision.googleapis.com/v1/images:annotate"

PowerShell

Guarda el cuerpo de la solicitud en un archivo llamado request.json y ejecuta el siguiente comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "PROJECT_ID" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://vision.googleapis.com/v1/images:annotate" | Select-Object -Expand Content

Si la solicitud se completa de forma correcta, el servidor muestra un código de estado HTTP 200 OK y la respuesta en formato JSON.

Respuesta:

{
  "responses": [
    {
      "landmarkAnnotations": [
        {
          "mid": "/m/014lft",
          "description": "Saint Basil's Cathedral",
          "score": 0.7840959,
          "boundingPoly": {
            "vertices": [
              {
                "x": 812,
                "y": 1058
              },
              {
                "x": 2389,
                "y": 1058
              },
              {
                "x": 2389,
                "y": 3052
              },
              {
                "x": 812,
                "y": 3052
              }
            ]
          },
          "locations": [
            {
              "latLng": {
                "latitude": 55.752912,
                "longitude": 37.622315883636475
              }
            }
          ]
        }
      ]
    }
  ]
}

Go

Antes de probar este código de muestra, sigue las instrucciones de configuración para Go que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Go.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


// detectLandmarks gets landmarks from the Vision API for an image at the given file path.
func detectLandmarksURI(w io.Writer, file string) error {
	ctx := context.Background()

	client, err := vision.NewImageAnnotatorClient(ctx)
	if err != nil {
		return err
	}

	image := vision.NewImageFromURI(file)
	annotations, err := client.DetectLandmarks(ctx, image, nil, 10)
	if err != nil {
		return err
	}

	if len(annotations) == 0 {
		fmt.Fprintln(w, "No landmarks found.")
	} else {
		fmt.Fprintln(w, "Landmarks:")
		for _, annotation := range annotations {
			fmt.Fprintln(w, annotation.Description)
		}
	}

	return nil
}

Java

Antes de probar este código de muestra, sigue las instrucciones de configuración para Java que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Java.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.


import com.google.cloud.vision.v1.AnnotateImageRequest;
import com.google.cloud.vision.v1.AnnotateImageResponse;
import com.google.cloud.vision.v1.BatchAnnotateImagesResponse;
import com.google.cloud.vision.v1.EntityAnnotation;
import com.google.cloud.vision.v1.Feature;
import com.google.cloud.vision.v1.Image;
import com.google.cloud.vision.v1.ImageAnnotatorClient;
import com.google.cloud.vision.v1.ImageSource;
import com.google.cloud.vision.v1.LocationInfo;
import java.io.IOException;
import java.util.ArrayList;
import java.util.List;

public class DetectLandmarksGcs {

  public static void detectLandmarksGcs() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String filePath = "gs://your-gcs-bucket/path/to/image/file.jpg";
    detectLandmarksGcs(filePath);
  }

  // Detects landmarks in the specified remote image on Google Cloud Storage.
  public static void detectLandmarksGcs(String gcsPath) throws IOException {
    List<AnnotateImageRequest> requests = new ArrayList<>();

    ImageSource imgSource = ImageSource.newBuilder().setGcsImageUri(gcsPath).build();
    Image img = Image.newBuilder().setSource(imgSource).build();
    Feature feat = Feature.newBuilder().setType(Feature.Type.LANDMARK_DETECTION).build();
    AnnotateImageRequest request =
        AnnotateImageRequest.newBuilder().addFeatures(feat).setImage(img).build();
    requests.add(request);

    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (ImageAnnotatorClient client = ImageAnnotatorClient.create()) {
      BatchAnnotateImagesResponse response = client.batchAnnotateImages(requests);
      List<AnnotateImageResponse> responses = response.getResponsesList();

      for (AnnotateImageResponse res : responses) {
        if (res.hasError()) {
          System.out.format("Error: %s%n", res.getError().getMessage());
          return;
        }

        // For full list of available annotations, see http://g.co/cloud/vision/docs
        for (EntityAnnotation annotation : res.getLandmarkAnnotationsList()) {
          LocationInfo info = annotation.getLocationsList().listIterator().next();
          System.out.format("Landmark: %s%n %s%n", annotation.getDescription(), info.getLatLng());
        }
      }
    }
  }
}

Node.js

Antes de probar este código de muestra, sigue las instrucciones de configuración para Node.js que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Node.js.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

// Imports the Google Cloud client libraries
const vision = require('@google-cloud/vision');

// Creates a client
const client = new vision.ImageAnnotatorClient();

/**
 * TODO(developer): Uncomment the following lines before running the sample.
 */
// const bucketName = 'Bucket where the file resides, e.g. my-bucket';
// const fileName = 'Path to file within bucket, e.g. path/to/image.png';

// Performs landmark detection on the gcs file
const [result] = await client.landmarkDetection(
  `gs://${bucketName}/${fileName}`
);
const landmarks = result.landmarkAnnotations;
console.log('Landmarks:');
landmarks.forEach(landmark => console.log(landmark));

Python

Antes de probar este código de muestra, sigue las instrucciones de configuración para Python que se encuentran en la Guía de inicio rápido de Vision sobre cómo usar las bibliotecas cliente. Si quieres obtener más información, consulta la documentación de referencia de la API de Vision para Python.

Para autenticarte en Vision, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

def detect_landmarks_uri(uri):
    """Detects landmarks in the file located in Google Cloud Storage or on the
    Web."""
    from google.cloud import vision

    client = vision.ImageAnnotatorClient()
    image = vision.Image()
    image.source.image_uri = uri

    response = client.landmark_detection(image=image)
    landmarks = response.landmark_annotations
    print("Landmarks:")

    for landmark in landmarks:
        print(landmark.description)

    if response.error.message:
        raise Exception(
            "{}\nFor more info on error messages, check: "
            "https://cloud.google.com/apis/design/errors".format(response.error.message)
        )

gcloud

Para realizar una detección de puntos de referencia, usa el comando gcloud ml vision detect-landmarks como se muestra en el siguiente ejemplo:

gcloud ml vision detect-landmarks gs://cloud-samples-data/vision/landmark/st_basils.jpeg

Lenguajes adicionales

C#: sigue lasinstrucciones de configuración de C# en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para .NET.

PHP: sigue las instrucciones de configuración de PHP en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para PHP.

Ruby: sigue las instrucciones de configuración de Ruby en la página Bibliotecas cliente y, luego, visita la documentación de referencia de Vision para Ruby.

Prueba la personalización

Prueba la detección de puntos de referencia que se muestra a continuación. Puedes usar la imagen ya especificada (gs://cloud-samples-data/vision/landmark/st_basils.jpeg) o especificar tu propia imagen en su lugar. Si deseas enviar la solicitud, selecciona Ejecutar.

Imagen de la Catedral de San Basilio
Crédito de la imagen: Nikolay Vorobyev en Unsplash.

Cuerpo de la solicitud:

{
  "requests": [
    {
      "features": [
        {
          "maxResults": 10,
          "type": "LANDMARK_DETECTION"
        }
      ],
      "image": {
        "source": {
          "imageUri": "gs://cloud-samples-data/vision/landmark/st_basils.jpeg"
        }
      }
    }
  ]
}