Como remover a implantação de um modelo

Depois de implantar e fazer previsões, é possível remover manualmente o modelo para evitar cobranças adicionais.

Ao remover a implantação do modelo, você evita outras cobranças de uso da hospedagem dele. Para mais informações, consulte a página de preços.

IU da Web

  1. Abra o AutoML Vision Object Detection UI e selecione a guia Modelos (com o ícone de lâmpada) na barra de navegação esquerda para exibir os modelos disponíveis.

    Para ver os modelos de outro projeto, selecione o projeto na lista suspensa na parte superior direita da barra de título.

  2. Selecione a linha do modelo que você quer usar para rotular as imagens.
  3. Selecione a guia Testar e usar logo abaixo da barra de título.
  4. Selecione Remover implantação no banner abaixo do nome do seu modelo para abrir a janela relacionada.

    Menu pop-up de remover implantação
  5. Selecione Remover implantação para remover a implantação do modelo.

    Implantação do modelo
  6. Você receberá um e-mail quando a remoção da implantação do modelo for concluída.

    e-mail de implantação concluída

REST e LINHA DE CMD

Antes de usar os dados da solicitação abaixo, faça estas substituições:

  • project-id: o ID do projeto do GCP.
  • model-id: o ID do seu modelo, a partir da resposta de quando você o criou. Ele é o último elemento no nome do modelo. Por exemplo:
    • Nome do modelo: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • ID do modelo: IOD4412217016962778756

Método HTTP e URL:

POST https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:undeploy

Para enviar a solicitação, escolha uma destas opções:

curl

Execute o seguinte comando:

curl -X POST \
-H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
-H "Content-Type: application/json; charset=utf-8" \
-d "" \
"https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:undeploy"

PowerShell

Execute o seguinte comando:

$cred = gcloud auth application-default print-access-token
$headers = @{ "Authorization" = "Bearer $cred" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/models/model-id:undeploy" | Select-Object -Expand Content
Você receberá uma resposta com o ID da operação de implantação:
{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-08-07T22:19:50.828033Z",
    "updateTime": "2019-08-07T22:19:50.828033Z",
    "undeployModelDetails": {}
  }
}

É possível ver o status de uma operação com o seguinte método HTTP e URL:

GET https://automl.googleapis.com/v1/projects/project-id/locations/us-central1/operations/operation-id

O status de uma operação concluída será semelhante ao seguinte:

{
  "name": "projects/project-id/locations/us-central1/operations/operation-id",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-06-21T16:47:21.704674Z",
    "updateTime": "2019-06-21T17:01:00.802505Z",
    "deployModelDetails": {}
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Go

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	automlpb "google.golang.org/genproto/googleapis/cloud/automl/v1"
)

// undeployModel deploys a model.
func undeployModel(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %v", err)
	}
	defer client.Close()

	req := &automlpb.UndeployModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
	}

	op, err := client.UndeployModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeployModel: %v", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	fmt.Fprintf(w, "Model undeployed.\n")

	return nil
}

Java

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.cloud.automl.v1.UndeployModelRequest;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class UndeployModel {

  static void undeployModel() throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    undeployModel(projectId, modelId);
  }

  // Undeploy a model from prediction
  static void undeployModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      UndeployModelRequest request =
          UndeployModelRequest.newBuilder().setName(modelFullId.toString()).build();
      OperationFuture<Empty, OperationMetadata> future = client.undeployModelAsync(request);

      future.get();
      System.out.println("Model undeployment finished");
    }
  }
}

Node.js

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function undeployModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [operation] = await client.undeployModel(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Model undeployment finished. ${response}`);
}

undeployModel();

Python

Antes de testar esta amostra, siga as instruções de configuração dessa linguagem na página Bibliotecas de cliente.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
response = client.undeploy_model(name=model_full_id)

print("Model undeployment finished. {}".format(response.result()))

Outras linguagens

C#: Siga as Instruções de configuração do C# na página das bibliotecas de cliente e acesse a Documentação de referência do AutoML Vision Object Detection para .NET.

PHP: Siga as Instruções de configuração do PHP na página das bibliotecas de cliente e acesse a Documentação de referência do AutoML Vision Object Detection para PHP.

Ruby: Siga as Instruções de configuração do Ruby na página das bibliotecas de cliente e acesse a Documentação de referência do AutoML Vision Object Detection para Ruby.