Annullamento del deployment del modello

Dopo aver eseguito il deployment e aver effettuato previsioni, puoi annullare manualmente il deployment del modello per evitare che comporta ulteriori addebiti.

Se annulli il deployment del modello, eviterai ulteriori costi di utilizzo dell'hosting del modello. Per ulteriori informazioni, consulta la pagina dei prezzi.

UI web

  1. Apri l'app AutoML Vision Object Detection UI e seleziona la scheda Modelli (con l'icona a forma di lampadina) nella barra di navigazione a sinistra barra per visualizzare i modelli disponibili.

    Per visualizzare i modelli di un altro progetto, seleziona il progetto dal nell'elenco a discesa in alto a destra della barra del titolo.

  2. Seleziona la riga relativa al modello che vuoi utilizzare per etichettare le immagini.
  3. Seleziona il pulsante Testa e Usa Tab appena sotto la barra del titolo.
  4. Seleziona Rimuovi deployment dal banner sotto il nome del modello per aprire la finestra con le opzioni di annullamento del deployment.

    menu popup di annullamento del deployment
  5. Seleziona Rimuovi deployment per annullare il deployment del modello.

    deployment del modello
  6. Riceverai un'email al termine dell'annullamento del deployment del modello.

    deployment email completato

REST

Prima di utilizzare i dati della richiesta, effettua le seguenti sostituzioni:

  • project-id: l'ID del tuo progetto Google Cloud.
  • model-id: l'ID del modello, dalla quando hai creato il modello. L'ID è l'ultimo elemento del nome del modello. Ad esempio:
    • nome modello: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • ID modello: IOD4412217016962778756

Metodo HTTP e URL:

POST https://automl.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/models/MODEL_ID:undeploy

Per inviare la richiesta, scegli una delle seguenti opzioni:

curl

Esegui questo comando:

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-id" \
-H "Content-Type: application/json; charset=utf-8" \
-d "" \
"https://automl.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/models/MODEL_ID:undeploy"

PowerShell

Esegui questo comando:

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-id" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/models/MODEL_ID:undeploy" | Select-Object -Expand Content
Dovresti ricevere una risposta con l'ID dell'operazione di deployment:
{
  "name": "projects/PROJECT_ID/locations/us-central1/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-08-07T22:19:50.828033Z",
    "updateTime": "2019-08-07T22:19:50.828033Z",
    "undeployModelDetails": {}
  }
}

Puoi ottenere lo stato di un'operazione con il metodo HTTP e l'URL seguenti:

GET https://automl.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/operations/OPERATION_ID

Lo stato di un'operazione terminata sarà simile al seguente:

{
  "name": "projects/PROJECT_ID/locations/us-central1/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-06-21T16:47:21.704674Z",
    "updateTime": "2019-06-21T17:01:00.802505Z",
    "deployModelDetails": {}
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

Go

Prima di provare questo esempio, segui le istruzioni di configurazione per questa lingua nella Librerie client.

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	"cloud.google.com/go/automl/apiv1/automlpb"
)

// undeployModel deploys a model.
func undeployModel(w io.Writer, projectID string, location string, modelID string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// modelID := "TRL123456789..."

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %w", err)
	}
	defer client.Close()

	req := &automlpb.UndeployModelRequest{
		Name: fmt.Sprintf("projects/%s/locations/%s/models/%s", projectID, location, modelID),
	}

	op, err := client.UndeployModel(ctx, req)
	if err != nil {
		return fmt.Errorf("DeployModel: %w", err)
	}
	fmt.Fprintf(w, "Processing operation name: %q\n", op.Name())

	if err := op.Wait(ctx); err != nil {
		return fmt.Errorf("Wait: %w", err)
	}

	fmt.Fprintf(w, "Model undeployed.\n")

	return nil
}

Java

Prima di provare questo esempio, segui le istruzioni di configurazione per questa lingua nella Librerie client.

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.AutoMlClient;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.cloud.automl.v1.UndeployModelRequest;
import com.google.protobuf.Empty;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

class UndeployModel {

  static void undeployModel() throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    undeployModel(projectId, modelId);
  }

  // Undeploy a model from prediction
  static void undeployModel(String projectId, String modelId)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the full path of the model.
      ModelName modelFullId = ModelName.of(projectId, "us-central1", modelId);
      UndeployModelRequest request =
          UndeployModelRequest.newBuilder().setName(modelFullId.toString()).build();
      OperationFuture<Empty, OperationMetadata> future = client.undeployModelAsync(request);

      future.get();
      System.out.println("Model undeployment finished");
    }
  }
}

Node.js

Prima di provare questo esempio, segui le istruzioni di configurazione per questa lingua nella Librerie client.

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function undeployModel() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
  };

  const [operation] = await client.undeployModel(request);

  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(`Model undeployment finished. ${response}`);
}

undeployModel();

Python

Prima di provare questo esempio, segui le istruzioni di configurazione per questa lingua nella Librerie client.

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"

client = automl.AutoMlClient()
# Get the full path of the model.
model_full_id = client.model_path(project_id, "us-central1", model_id)
response = client.undeploy_model(name=model_full_id)

print(f"Model undeployment finished. {response.result()}")

Linguaggi aggiuntivi

C#: Segui le Istruzioni per la configurazione di C# Nella pagina delle librerie client e poi visita Documentazione di riferimento per il rilevamento di oggetti di AutoML Vision per .NET.

PHP Segui le Istruzioni per la configurazione dei file PHP Nella pagina delle librerie client e poi visita Documentazione di riferimento per il rilevamento di oggetti di AutoML Vision per PHP.

Rubino: Segui le Istruzioni per la configurazione di Ruby Nella pagina delle librerie client e poi visita Documentazione di riferimento per il rilevamento di oggetti di AutoML Vision per Ruby.