バッチ予測の作成

モデルを作成(トレーニング)した後、batchPredict メソッドを使用すると、複数の画像の予測を一括で行う非同期リクエストを送信できます。batchPredict メソッドは、モデルで指定されたオブジェクトに基づいて画像にアノテーションを適用します。

カスタムモデルの最大寿命は 18 か月です。この時間が経過した後もアノテーションの適用を継続するには、新しいモデルを作成し、トレーニングする必要があります。

バッチ予測

画像のアノテーション(予測)をリクエストするには、batchPredict コマンドを実行します。batchPredict コマンドは、Google Cloud Storage のロケーションに格納され、アノテーションを付ける画像のパスを含む CSV ファイルを入力として使用します。1 つの行に、Google Cloud Storage にある 1 つの画像のパスを指定します。例:

batch_prediction.csv:

gs://my-cloud-storage-bucket/prediction_files/image1.jpg
gs://my-cloud-storage-bucket/prediction_files/image2.jpg
gs://my-cloud-storage-bucket/prediction_files/image3.jpg
gs://my-cloud-storage-bucket/prediction_files/image4.jpg
gs://my-cloud-storage-bucket/prediction_files/image5.jpg
gs://my-cloud-storage-bucket/prediction_files/image6.png

CSV ファイルに指定されている画像の数によっては、バッチ予測タスクの完了に時間がかかることがあります。少数の画像でバッチ予測を行う場合でも、最低で 30 分はかかります。

REST

リクエストのデータを使用する前に、次のように置き換えます。

  • project-id: GCP プロジェクト ID
  • location-id: 有効なロケーション ID。現在のところ、次の値を使用する必要があります。
    • us-central1
  • model-id: モデルを作成したときにレスポンスで返されたモデルの ID。この ID は、モデルの名前の最後の要素です。例:
    • モデル名: projects/project-id/locations/location-id/models/IOD4412217016962778756
    • モデル ID: IOD4412217016962778756
  • input-storage-path: Google Cloud Storage に保存されている CSV ファイルへのパス。リクエスト元のユーザーには、少なくともバケットに対する読み取り権限が必要です。
  • output-storage-bucket: 出力ファイルを保存する Google Cloud Storage バケット/ディレクトリ(形式: gs://bucket/directory/)。リクエスト元のユーザーには、バケットへの書き込み権限が必要です。

フィールド固有の考慮事項:

  • params.score_threshold - 0.0~1.0 の値。スコアがこの値以上の結果のみが返されます。

HTTP メソッドと URL:

POST https://automl.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/models/MODEL_ID:batchPredict

リクエストの本文(JSON):

{
  "inputConfig": {
    "gcsSource": {
       "inputUris": [ "INPUT_STORAGE_PATH" ]
    }
  },
  "outputConfig": {
    "gcsDestination": {
      "outputUriPrefix": "OUTPUT_STORAGE_BUCKET"
    }
  },
  "params": {
    "score_threshold": "0.0"
  }
}

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

curl -X POST \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-id" \
-H "Content-Type: application/json; charset=utf-8" \
-d @request.json \
"https://automl.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/models/MODEL_ID:batchPredict"

PowerShell

リクエスト本文を request.json という名前のファイルに保存して、次のコマンドを実行します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-id" }

Invoke-WebRequest `
-Method POST `
-Headers $headers `
-ContentType: "application/json; charset=utf-8" `
-InFile request.json `
-Uri "https://automl.googleapis.com/v1/projects/PROJECT_ID/locations/LOCATION_ID/models/MODEL_ID:batchPredict" | Select-Object -Expand Content
レスポンス:

出力は次のようになります。

{
  "name": "projects/PROJECT_ID/locations/LOCATION_ID/operations/IOD926615623331479552",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-06-19T21:28:35.302067Z",
    "updateTime": "2019-06-19T21:28:35.302067Z",
    "batchPredictDetails": {
      "inputConfig": {
        "gcsSource": {
          "inputUris": [
            "INPUT_STORAGE_PATH"
          ]
        }
      }
    }
  }
}

タスクのステータスは、オペレーション ID(この場合は IOD926615623331479552)を使用して取得できます。例については、長時間実行オペレーションによる作業をご覧ください。

CSV ファイルに指定されている画像の数によっては、バッチ予測タスクの完了に時間がかかることがあります。少数の画像でバッチ予測を行う場合でも、最低で 30 分はかかります。

オペレーションが完了すると、stateDONE となり、指定した Google Cloud Storage ファイルに結果が書き込まれます。

{
  "name": "projects/PROJECT_ID/locations/LOCATION_ID/operations/IOD926615623331479552",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-06-19T21:28:35.302067Z",
    "updateTime": "2019-06-19T21:57:18.310033Z",
    "batchPredictDetails": {
      "inputConfig": {
        "gcsSource": {
          "inputUris": [
            "INPUT_STORAGE_PATH"
          ]
        }
      },
      "outputInfo": {
        "gcsOutputDirectory": "gs://STORAGE_BUCKET_VCM/SUBDIRECTORY/prediction-8370559933346329705-YYYY-MM-DDThh:mm:ss.sssZ"
      }
    }
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.BatchPredictResult"
  }
}

サンプル出力ファイルについては、以下の JSONL 出力ファイルをご覧ください。

Java

このサンプルを試す前に、クライアント ライブラリ ページを参照して、この言語の設定手順を完了してください。

import com.google.api.gax.longrunning.OperationFuture;
import com.google.cloud.automl.v1.BatchPredictInputConfig;
import com.google.cloud.automl.v1.BatchPredictOutputConfig;
import com.google.cloud.automl.v1.BatchPredictRequest;
import com.google.cloud.automl.v1.BatchPredictResult;
import com.google.cloud.automl.v1.GcsDestination;
import com.google.cloud.automl.v1.GcsSource;
import com.google.cloud.automl.v1.ModelName;
import com.google.cloud.automl.v1.OperationMetadata;
import com.google.cloud.automl.v1.PredictionServiceClient;
import java.io.IOException;
import java.util.concurrent.ExecutionException;

abstract class BatchPredict {

  static void batchPredict() throws IOException, ExecutionException, InterruptedException {
    // TODO(developer): Replace these variables before running the sample.
    String projectId = "YOUR_PROJECT_ID";
    String modelId = "YOUR_MODEL_ID";
    String inputUri = "gs://YOUR_BUCKET_ID/path_to_your_input_csv_or_jsonl";
    String outputUri = "gs://YOUR_BUCKET_ID/path_to_save_results/";
    batchPredict(projectId, modelId, inputUri, outputUri);
  }

  static void batchPredict(String projectId, String modelId, String inputUri, String outputUri)
      throws IOException, ExecutionException, InterruptedException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (PredictionServiceClient client = PredictionServiceClient.create()) {
      // Get the full path of the model.
      ModelName name = ModelName.of(projectId, "us-central1", modelId);
      GcsSource gcsSource = GcsSource.newBuilder().addInputUris(inputUri).build();
      BatchPredictInputConfig inputConfig =
          BatchPredictInputConfig.newBuilder().setGcsSource(gcsSource).build();
      GcsDestination gcsDestination =
          GcsDestination.newBuilder().setOutputUriPrefix(outputUri).build();
      BatchPredictOutputConfig outputConfig =
          BatchPredictOutputConfig.newBuilder().setGcsDestination(gcsDestination).build();
      BatchPredictRequest request =
          BatchPredictRequest.newBuilder()
              .setName(name.toString())
              .setInputConfig(inputConfig)
              .setOutputConfig(outputConfig)
              .build();

      OperationFuture<BatchPredictResult, OperationMetadata> future =
          client.batchPredictAsync(request);

      System.out.println("Waiting for operation to complete...");
      future.get();
      System.out.println("Batch Prediction results saved to specified Cloud Storage bucket.");
    }
  }
}

Node.js

このサンプルを試す前に、クライアント ライブラリ ページを参照して、この言語の設定手順を完了してください。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const modelId = 'YOUR_MODEL_ID';
// const inputUri = 'gs://YOUR_BUCKET_ID/path_to_your_input_csv_or_jsonl';
// const outputUri = 'gs://YOUR_BUCKET_ID/path_to_save_results/';

// Imports the Google Cloud AutoML library
const {PredictionServiceClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new PredictionServiceClient();

async function batchPredict() {
  // Construct request
  const request = {
    name: client.modelPath(projectId, location, modelId),
    inputConfig: {
      gcsSource: {
        inputUris: [inputUri],
      },
    },
    outputConfig: {
      gcsDestination: {
        outputUriPrefix: outputUri,
      },
    },
  };

  const [operation] = await client.batchPredict(request);

  console.log('Waiting for operation to complete...');
  // Wait for operation to complete.
  const [response] = await operation.promise();
  console.log(
    `Batch Prediction results saved to Cloud Storage bucket. ${response}`
  );
}

batchPredict();

Python

このサンプルを試す前に、クライアント ライブラリ ページを参照して、この言語の設定手順を完了してください。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# project_id = "YOUR_PROJECT_ID"
# model_id = "YOUR_MODEL_ID"
# input_uri = "gs://YOUR_BUCKET_ID/path/to/your/input/csv_or_jsonl"
# output_uri = "gs://YOUR_BUCKET_ID/path/to/save/results/"

prediction_client = automl.PredictionServiceClient()

# Get the full path of the model.
model_full_id = f"projects/{project_id}/locations/us-central1/models/{model_id}"

gcs_source = automl.GcsSource(input_uris=[input_uri])

input_config = automl.BatchPredictInputConfig(gcs_source=gcs_source)
gcs_destination = automl.GcsDestination(output_uri_prefix=output_uri)
output_config = automl.BatchPredictOutputConfig(gcs_destination=gcs_destination)

response = prediction_client.batch_predict(
    name=model_full_id, input_config=input_config, output_config=output_config
)

print("Waiting for operation to complete...")
print(
    f"Batch Prediction results saved to Cloud Storage bucket. {response.result()}"
)

その他の言語

C#: クライアント ライブラリ ページの C# の設定手順を行ってから、.NET 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

PHP: クライアント ライブラリ ページの PHP の設定手順を行ってから、PHP 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

Ruby: クライアント ライブラリ ページの Ruby の設定手順を行ってから、Ruby 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

JSONL 出力ファイル

バッチ予測タスクが完了すると、コマンドに指定した Google Cloud Storage のロケーションに予測の出力が保存されます。

出力先のストレージ(選択したオブジェクト プレフィックス付き)に、ファイルimage_object_detection_1.jsonlimage_object_detection_2.jsonl、...、image_object_detection_N.jsonl が作成されます。N は正常に予測された画像とアノテーションの総数です。

1 つの画像は、すべてのアノテーションとともに 1 回だけリストに出力されます。1 つの画像のアノテーションが複数のファイルにまたがることはありません。

各 JSONL ファイルでは、1 行に 1 つの proto の JSON 表現が含まれます。この proto は画像の "ID" : "<id_value>" をラップし、その後に 0 個以上の AnnotationPayload proto(アノテーション)が続き、imageObjectDetection の詳細が示されます。

JSONL ファイルの例(2 行のファイル アノテーションを含む単一の .jsonl ファイル):

image_object_detection_0.jsonl

長時間実行オペレーションによる作業

REST

リクエストのデータを使用する前に、次のように置き換えます。

  • project-id: GCP プロジェクト ID
  • operation-id: オペレーションの IDこの ID は、オペレーションの名前の最後の要素です。例:
    • オペレーション名: projects/project-id/locations/location-id/operations/IOD5281059901324392598
    • オペレーション ID: IOD5281059901324392598

HTTP メソッドと URL:

GET https://automl.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/operations/OPERATION_ID

リクエストを送信するには、次のいずれかのオプションを選択します。

curl

次のコマンドを実行します。

curl -X GET \
-H "Authorization: Bearer $(gcloud auth print-access-token)" \
-H "x-goog-user-project: project-id" \
"https://automl.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/operations/OPERATION_ID"

PowerShell

次のコマンドを実行します。

$cred = gcloud auth print-access-token
$headers = @{ "Authorization" = "Bearer $cred"; "x-goog-user-project" = "project-id" }

Invoke-WebRequest `
-Method GET `
-Headers $headers `
-Uri "https://automl.googleapis.com/v1/projects/PROJECT_ID/locations/us-central1/operations/OPERATION_ID" | Select-Object -Expand Content
完了したインポート オペレーションの場合、出力は次のようになります。
{
  "name": "projects/PROJECT_ID/locations/us-central1/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2018-10-29T15:56:29.176485Z",
    "updateTime": "2018-10-29T16:10:41.326614Z",
    "importDataDetails": {}
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.protobuf.Empty"
  }
}

完了したモデル作成オペレーションの場合、出力は次のようになります。

{
  "name": "projects/PROJECT_ID/locations/us-central1/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.OperationMetadata",
    "createTime": "2019-07-22T18:35:06.881193Z",
    "updateTime": "2019-07-22T19:58:44.972235Z",
    "createModelDetails": {}
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.automl.v1.Model",
    "name": "projects/PROJECT_ID/locations/us-central1/models/MODEL_ID"
  }
}

Go

このサンプルを試す前に、クライアント ライブラリ ページを参照して、この言語の設定手順を完了してください。

import (
	"context"
	"fmt"
	"io"

	automl "cloud.google.com/go/automl/apiv1"
	"cloud.google.com/go/automl/apiv1/automlpb"
)

// getOperationStatus gets an operation's status.
func getOperationStatus(w io.Writer, projectID string, location string, datasetID string, modelName string) error {
	// projectID := "my-project-id"
	// location := "us-central1"
	// datasetID := "ICN123456789..."
	// modelName := "model_display_name"

	ctx := context.Background()
	client, err := automl.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("NewClient: %w", err)
	}
	defer client.Close()

	req := &automlpb.CreateModelRequest{
		Parent: fmt.Sprintf("projects/%s/locations/%s", projectID, location),
		Model: &automlpb.Model{
			DisplayName: modelName,
			DatasetId:   datasetID,
			ModelMetadata: &automlpb.Model_ImageClassificationModelMetadata{
				ImageClassificationModelMetadata: &automlpb.ImageClassificationModelMetadata{
					TrainBudgetMilliNodeHours: 1000, // 1000 milli-node hours are 1 hour
				},
			},
		},
	}

	op, err := client.CreateModel(ctx, req)
	if err != nil {
		return err
	}
	fmt.Fprintf(w, "Name: %v\n", op.Name())

	// Wait for the longrunning operation complete.
	resp, err := op.Wait(ctx)
	if err != nil && !op.Done() {
		fmt.Println("failed to fetch operation status", err)
		return err
	}
	if err != nil && op.Done() {
		fmt.Println("operation completed with error", err)
		return err
	}
	fmt.Fprintf(w, "Response: %v\n", resp)

	return nil
}

Java

このサンプルを試す前に、クライアント ライブラリ ページを参照して、この言語の設定手順を完了してください。

import com.google.cloud.automl.v1.AutoMlClient;
import com.google.longrunning.Operation;
import java.io.IOException;

class GetOperationStatus {

  static void getOperationStatus() throws IOException {
    // TODO(developer): Replace these variables before running the sample.
    String operationFullId = "projects/[projectId]/locations/us-central1/operations/[operationId]";
    getOperationStatus(operationFullId);
  }

  // Get the status of an operation
  static void getOperationStatus(String operationFullId) throws IOException {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests. After completing all of your requests, call
    // the "close" method on the client to safely clean up any remaining background resources.
    try (AutoMlClient client = AutoMlClient.create()) {
      // Get the latest state of a long-running operation.
      Operation operation = client.getOperationsClient().getOperation(operationFullId);

      // Display operation details.
      System.out.println("Operation details:");
      System.out.format("\tName: %s\n", operation.getName());
      System.out.format("\tMetadata Type Url: %s\n", operation.getMetadata().getTypeUrl());
      System.out.format("\tDone: %s\n", operation.getDone());
      if (operation.hasResponse()) {
        System.out.format("\tResponse Type Url: %s\n", operation.getResponse().getTypeUrl());
      }
      if (operation.hasError()) {
        System.out.println("\tResponse:");
        System.out.format("\t\tError code: %s\n", operation.getError().getCode());
        System.out.format("\t\tError message: %s\n", operation.getError().getMessage());
      }
    }
  }
}

Node.js

このサンプルを試す前に、クライアント ライブラリ ページを参照して、この言語の設定手順を完了してください。

/**
 * TODO(developer): Uncomment these variables before running the sample.
 */
// const projectId = 'YOUR_PROJECT_ID';
// const location = 'us-central1';
// const operationId = 'YOUR_OPERATION_ID';

// Imports the Google Cloud AutoML library
const {AutoMlClient} = require('@google-cloud/automl').v1;

// Instantiates a client
const client = new AutoMlClient();

async function getOperationStatus() {
  // Construct request
  const request = {
    name: `projects/${projectId}/locations/${location}/operations/${operationId}`,
  };

  const [response] = await client.operationsClient.getOperation(request);

  console.log(`Name: ${response.name}`);
  console.log('Operation details:');
  console.log(`${response}`);
}

getOperationStatus();

Python

このサンプルを試す前に、クライアント ライブラリ ページを参照して、この言語の設定手順を完了してください。

from google.cloud import automl

# TODO(developer): Uncomment and set the following variables
# operation_full_id = \
#     "projects/[projectId]/locations/us-central1/operations/[operationId]"

client = automl.AutoMlClient()
# Get the latest state of a long-running operation.
response = client._transport.operations_client.get_operation(operation_full_id)

print(f"Name: {response.name}")
print("Operation details:")
print(response)

その他の言語

C#: クライアント ライブラリ ページの C# の設定手順を行ってから、.NET 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

PHP: クライアント ライブラリ ページの PHP の設定手順を行ってから、PHP 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。

Ruby: クライアント ライブラリ ページの Ruby の設定手順を行ってから、Ruby 用の AutoML Vision Object Detection リファレンス ドキュメントをご覧ください。