텍스트 인식

텍스트 감지는 입력 동영상 내에서 텍스트를 감지하고 추출하는 광학 문자 인식(OCR)을 수행합니다.

텍스트 감지는 Cloud Vision API에서 지원하는 모든 언어에 사용할 수 있습니다.

Google Cloud Storage의 동영상에 대한 텍스트 감지 요청

다음 샘플은 Cloud Storage에 있는 파일로 텍스트 감지를 수행하는 방법을 보여줍니다.

REST 및 명령줄

동영상 주석 요청 전송

다음은 videos:annotate 메서드에 POST 요청을 보내는 방법을 보여줍니다. 이 예시에서는 Cloud SDK를 사용하여 프로젝트에 설정된 서비스 계정의 액세스 토큰을 사용합니다. Cloud SDK 설치, 서비스 계정으로 프로젝트 설정, 액세스 토큰 획득 방법은 Video Intelligence API 빠른 시작을 참조하세요.

아래의 요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • INPUT_URI: 파일 이름을 포함하여 주석을 추가하고자 하는 파일을 포함한 Cloud Storage 버킷입니다. gs://로 시작해야 합니다.
    예를 들면 "inputUri": "gs://cloud-videointelligence-demo/assistant.mp4",입니다.
  • LANGUAGE_CODE: [선택사항] 예를 들면 'en-US'입니다.

HTTP 메서드 및 URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

JSON 요청 본문:

{
  "inputUri": "INPUT_URI",
  "features": ["TEXT_DETECTION"],
  "videoContext": {
    "textDetectionConfig": {
      "languageHints": ["LANGUAGE_CODE"]
    }
  }
}

요청을 보내려면 다음 옵션 중 하나를 펼칩니다.

다음과 비슷한 JSON 응답이 표시됩니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

응답이 성공하면 Video Intelligence API가 작업의 name을 반환합니다. 위 항목은 이러한 응답의 예시를 보여줍니다. 여기서 project-number는 프로젝트의 번호이고 operation-id는 요청에 대해 생성된 장기 실행 작업의 ID입니다.

  • PROJECT_NUMBER: 프로젝트 수입니다.
  • LOCATION_ID: 주석이 있어야 할 클라우드 리전입니다. 지원되는 클라우드 리전은 us-east1, us-west1, europe-west1, asia-east1입니다. 리전을 지정하지 않으면 동영상 파일 위치를 기준으로 리전이 결정됩니다.
  • OPERATION_ID: 작업을 시작할 때 요청으로 생성되고 응답으로 제공된 장기 실행 작업의 ID로 예를 들면 12345...입니다.

주석 결과 가져오기

작업 결과를 검색하려면 다음 예시에 표시된 것처럼 videos:annotate 호출로부터 반환된 작업 이름을 사용하여 GET 요청을 수행합니다.

아래의 요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • OPERATION_NAME: Video Intelligence API로 반환되는 작업의 이름입니다. 작업 이름은 projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID 형식입니다.

HTTP 메서드 및 URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

요청을 보내려면 다음 옵션 중 하나를 펼칩니다.

다음과 유사한 JSON 응답이 표시됩니다.

텍스트 감지 주석은 textAnnotations 목록으로 반환됩니다. 참고: done 필드는 값이 True일 경우에만 반환됩니다. 작업이 완료되지 않은 경우에는 응답에 이 필드가 포함되지 않습니다.

주석 결과 다운로드

소스에서 대상 버킷으로 주석을 복사합니다(파일 및 객체 복사 참조).

gsutil cp gcs_uri gs://my-bucket

참고: 사용자가 출력 gcs uri를 제공하면 주석이 해당 gcs uri에 저장됩니다.

Go


import (
	"context"
	"fmt"
	"io"

	video "cloud.google.com/go/videointelligence/apiv1"
	"github.com/golang/protobuf/ptypes"
	videopb "google.golang.org/genproto/googleapis/cloud/videointelligence/v1"
)

// textDetectionGCS analyzes a video and extracts the text from the video's audio.
func textDetectionGCS(w io.Writer, gcsURI string) error {
	// gcsURI := "gs://python-docs-samples-tests/video/googlework_short.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %v", err)
	}

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputUri: gcsURI,
		Features: []videopb.Feature{
			videopb.Feature_TEXT_DETECTION,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %v", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.TextAnnotations {
		fmt.Fprintf(w, "Text: %q\n", annotation.GetText())

		// Get the first text segment.
		segment := annotation.GetSegments()[0]
		start, _ := ptypes.Duration(segment.GetSegment().GetStartTimeOffset())
		end, _ := ptypes.Duration(segment.GetSegment().GetEndTimeOffset())
		fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)

		fmt.Fprintf(w, "\tConfidence: %f\n", segment.GetConfidence())

		// Show the result for the first frame in this segment.
		frame := segment.GetFrames()[0]
		seconds := float32(frame.GetTimeOffset().GetSeconds())
		nanos := float32(frame.GetTimeOffset().GetNanos())
		fmt.Fprintf(w, "\tTime offset of the first frame: %fs\n", seconds+nanos/1e9)

		fmt.Fprintf(w, "\tRotated bounding box vertices:\n")
		for _, vertex := range frame.GetRotatedBoundingBox().GetVertices() {
			fmt.Fprintf(w, "\t\tVertex x=%f, y=%f\n", vertex.GetX(), vertex.GetY())
		}
	}

	return nil
}

자바

/**
 * Detect Text in a video.
 *
 * @param gcsUri the path to the video file to analyze.
 */
public static VideoAnnotationResults detectTextGcs(String gcsUri) throws Exception {
  try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
    // Create the request
    AnnotateVideoRequest request =
        AnnotateVideoRequest.newBuilder()
            .setInputUri(gcsUri)
            .addFeatures(Feature.TEXT_DETECTION)
            .build();

    // asynchronously perform object tracking on videos
    OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
        client.annotateVideoAsync(request);

    System.out.println("Waiting for operation to complete...");
    // The first result is retrieved because a single video was processed.
    AnnotateVideoResponse response = future.get(300, TimeUnit.SECONDS);
    VideoAnnotationResults results = response.getAnnotationResults(0);

    // Get only the first annotation for demo purposes.
    TextAnnotation annotation = results.getTextAnnotations(0);
    System.out.println("Text: " + annotation.getText());

    // Get the first text segment.
    TextSegment textSegment = annotation.getSegments(0);
    System.out.println("Confidence: " + textSegment.getConfidence());
    // For the text segment display it's time offset
    VideoSegment videoSegment = textSegment.getSegment();
    Duration startTimeOffset = videoSegment.getStartTimeOffset();
    Duration endTimeOffset = videoSegment.getEndTimeOffset();
    // Display the offset times in seconds, 1e9 is part of the formula to convert nanos to seconds
    System.out.println(
        String.format(
            "Start time: %.2f", startTimeOffset.getSeconds() + startTimeOffset.getNanos() / 1e9));
    System.out.println(
        String.format(
            "End time: %.2f", endTimeOffset.getSeconds() + endTimeOffset.getNanos() / 1e9));

    // Show the first result for the first frame in the segment.
    TextFrame textFrame = textSegment.getFrames(0);
    Duration timeOffset = textFrame.getTimeOffset();
    System.out.println(
        String.format(
            "Time offset for the first frame: %.2f",
            timeOffset.getSeconds() + timeOffset.getNanos() / 1e9));

    // Display the rotated bounding box for where the text is on the frame.
    System.out.println("Rotated Bounding Box Vertices:");
    List<NormalizedVertex> vertices = textFrame.getRotatedBoundingBox().getVerticesList();
    for (NormalizedVertex normalizedVertex : vertices) {
      System.out.println(
          String.format(
              "\tVertex.x: %.2f, Vertex.y: %.2f",
              normalizedVertex.getX(), normalizedVertex.getY()));
    }
    return results;
  }
}

Node.js

// Imports the Google Cloud Video Intelligence library
const Video = require('@google-cloud/video-intelligence');
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

const request = {
  inputUri: gcsUri,
  features: ['TEXT_DETECTION'],
};
// Detects text in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');
// Gets annotations for video
const textAnnotations = results[0].annotationResults[0].textAnnotations;
textAnnotations.forEach(textAnnotation => {
  console.log(`Text ${textAnnotation.text} occurs at:`);
  textAnnotation.segments.forEach(segment => {
    const time = segment.segment;
    console.log(
      ` Start: ${time.startTimeOffset.seconds || 0}.${(
        time.startTimeOffset.nanos / 1e6
      ).toFixed(0)}s`
    );
    console.log(
      ` End: ${time.endTimeOffset.seconds || 0}.${(
        time.endTimeOffset.nanos / 1e6
      ).toFixed(0)}s`
    );
    console.log(` Confidence: ${segment.confidence}`);
    segment.frames.forEach(frame => {
      const timeOffset = frame.timeOffset;
      console.log(
        `Time offset for the frame: ${timeOffset.seconds || 0}` +
          `.${(timeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log('Rotated Bounding Box Vertices:');
      frame.rotatedBoundingBox.vertices.forEach(vertex => {
        console.log(`Vertex.x:${vertex.x}, Vertex.y:${vertex.y}`);
      });
    });
  });
});

Python

"""Detect text in a video stored on GCS."""
from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.TEXT_DETECTION]

operation = video_client.annotate_video(
    request={"features": features, "input_uri": input_uri}
)

print("\nProcessing video for text detection.")
result = operation.result(timeout=600)

# The first result is retrieved because a single video was processed.
annotation_result = result.annotation_results[0]

for text_annotation in annotation_result.text_annotations:
    print("\nText: {}".format(text_annotation.text))

    # Get the first text segment
    text_segment = text_annotation.segments[0]
    start_time = text_segment.segment.start_time_offset
    end_time = text_segment.segment.end_time_offset
    print(
        "start_time: {}, end_time: {}".format(
            start_time.seconds + start_time.microseconds * 1e-6,
            end_time.seconds + end_time.microseconds * 1e-6,
        )
    )

    print("Confidence: {}".format(text_segment.confidence))

    # Show the result for the first frame in this segment.
    frame = text_segment.frames[0]
    time_offset = frame.time_offset
    print(
        "Time offset for the first frame: {}".format(
            time_offset.seconds + time_offset.microseconds * 1e-6
        )
    )
    print("Rotated Bounding Box Vertices:")
    for vertex in frame.rotated_bounding_box.vertices:
        print("\tVertex.x: {}, Vertex.y: {}".format(vertex.x, vertex.y))

로컬 파일에서 동영상의 텍스트 감지 요청

다음 샘플은 로컬에 저장된 파일에 대한 텍스트 탐지를 보여줍니다.

REST 및 명령줄

동영상 주석 요청 전송

로컬 동영상 파일에서 주석을 수행하려면 동영상 파일의 콘텐츠를 base64로 인코딩해야 합니다. 요청의 inputContent 필드에 base64로 인코딩된 콘텐츠를 포함합니다. 동영상 파일의 콘텐츠를 base64로 인코딩하는 방법에 대한 자세한 내용은 Base64 인코딩을 참조하세요.

다음은 videos:annotate 메서드에 POST 요청을 보내는 방법을 보여줍니다. 이 예시에서는 Cloud SDK를 사용하여 프로젝트에 설정된 서비스 계정의 액세스 토큰을 사용합니다. Cloud SDK 설치, 서비스 계정으로 프로젝트 설정, 액세스 토큰 획득 방법은 Video Intelligence API 빠른 시작을 참조하세요.

아래의 요청 데이터를 사용하기 전에 다음을 바꿉니다.

  • "inputContent": BASE64_ENCODED_CONTENT
    예를 들면 다음과 같습니다.
    "UklGRg41AwBBVkkgTElTVAwBAABoZHJsYXZpaDgAAAA1ggAAxPMBAAAAAAAQCAA..."
  • LANGUAGE_CODE: [선택사항] 예를 들면 'en-US'입니다.

HTTP 메서드 및 URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

JSON 요청 본문:

{
  "inputContent": "BASE64_ENCODED_CONTENT",
  "features": ["TEXT_DETECTION"],
  "videoContext": {
    "textDetectionConfig": {
      "languageHints": ["LANGUAGE_CODE"]
    }
  }
}

요청을 보내려면 다음 옵션 중 하나를 펼칩니다.

다음과 유사한 JSON 응답이 표시됩니다.

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

응답이 성공하면 Video Intelligence API가 작업의 name을 반환합니다. 위 항목은 이러한 응답의 예시를 보여줍니다. 여기서 project-number는 프로젝트의 이름이고 operation-id는 요청에 대해 생성된 장기 실행 작업의 ID입니다.

  • OPERATION_ID: 작업을 시작할 때 응답에 제공됩니다. 예를 들면 12345...입니다.

주석 결과 가져오기

작업 결과를 검색하려면 다음 예시에 표시된 것처럼 videos:annotate 호출로부터 반환된 작업 이름을 사용하여 GET 요청을 수행합니다.

HTTP 메서드 및 URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

요청을 보내려면 다음 옵션 중 하나를 펼칩니다.

다음과 유사한 JSON 응답이 표시됩니다.

텍스트 감지 주석은 textAnnotations 목록으로 반환됩니다. 참고: done 필드는 값이 True일 경우에만 반환됩니다. 작업이 완료되지 않은 경우에는 응답에 이 필드가 포함되지 않습니다.

Go


import (
	"context"
	"fmt"
	"io"
	"io/ioutil"

	video "cloud.google.com/go/videointelligence/apiv1"
	"github.com/golang/protobuf/ptypes"
	videopb "google.golang.org/genproto/googleapis/cloud/videointelligence/v1"
)

// textDetection analyzes a video and extracts the text from the video's audio.
func textDetection(w io.Writer, filename string) error {
	// filename := "../testdata/googlework_short.mp4"

	ctx := context.Background()

	// Creates a client.
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %v", err)
	}

	fileBytes, err := ioutil.ReadFile(filename)
	if err != nil {
		return fmt.Errorf("ioutil.ReadFile: %v", err)
	}

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		InputContent: fileBytes,
		Features: []videopb.Feature{
			videopb.Feature_TEXT_DETECTION,
		},
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %v", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	// Only one video was processed, so get the first result.
	result := resp.GetAnnotationResults()[0]

	for _, annotation := range result.TextAnnotations {
		fmt.Fprintf(w, "Text: %q\n", annotation.GetText())

		// Get the first text segment.
		segment := annotation.GetSegments()[0]
		start, _ := ptypes.Duration(segment.GetSegment().GetStartTimeOffset())
		end, _ := ptypes.Duration(segment.GetSegment().GetEndTimeOffset())
		fmt.Fprintf(w, "\tSegment: %v to %v\n", start, end)

		fmt.Fprintf(w, "\tConfidence: %f\n", segment.GetConfidence())

		// Show the result for the first frame in this segment.
		frame := segment.GetFrames()[0]
		seconds := float32(frame.GetTimeOffset().GetSeconds())
		nanos := float32(frame.GetTimeOffset().GetNanos())
		fmt.Fprintf(w, "\tTime offset of the first frame: %fs\n", seconds+nanos/1e9)

		fmt.Fprintf(w, "\tRotated bounding box vertices:\n")
		for _, vertex := range frame.GetRotatedBoundingBox().GetVertices() {
			fmt.Fprintf(w, "\t\tVertex x=%f, y=%f\n", vertex.GetX(), vertex.GetY())
		}
	}

	return nil
}

자바

/**
 * Detect text in a video.
 *
 * @param filePath the path to the video file to analyze.
 */
public static VideoAnnotationResults detectText(String filePath) throws Exception {
  try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
    // Read file
    Path path = Paths.get(filePath);
    byte[] data = Files.readAllBytes(path);

    // Create the request
    AnnotateVideoRequest request =
        AnnotateVideoRequest.newBuilder()
            .setInputContent(ByteString.copyFrom(data))
            .addFeatures(Feature.TEXT_DETECTION)
            .build();

    // asynchronously perform object tracking on videos
    OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> future =
        client.annotateVideoAsync(request);

    System.out.println("Waiting for operation to complete...");
    // The first result is retrieved because a single video was processed.
    AnnotateVideoResponse response = future.get(300, TimeUnit.SECONDS);
    VideoAnnotationResults results = response.getAnnotationResults(0);

    // Get only the first annotation for demo purposes.
    TextAnnotation annotation = results.getTextAnnotations(0);
    System.out.println("Text: " + annotation.getText());

    // Get the first text segment.
    TextSegment textSegment = annotation.getSegments(0);
    System.out.println("Confidence: " + textSegment.getConfidence());
    // For the text segment display it's time offset
    VideoSegment videoSegment = textSegment.getSegment();
    Duration startTimeOffset = videoSegment.getStartTimeOffset();
    Duration endTimeOffset = videoSegment.getEndTimeOffset();
    // Display the offset times in seconds, 1e9 is part of the formula to convert nanos to seconds
    System.out.println(
        String.format(
            "Start time: %.2f", startTimeOffset.getSeconds() + startTimeOffset.getNanos() / 1e9));
    System.out.println(
        String.format(
            "End time: %.2f", endTimeOffset.getSeconds() + endTimeOffset.getNanos() / 1e9));

    // Show the first result for the first frame in the segment.
    TextFrame textFrame = textSegment.getFrames(0);
    Duration timeOffset = textFrame.getTimeOffset();
    System.out.println(
        String.format(
            "Time offset for the first frame: %.2f",
            timeOffset.getSeconds() + timeOffset.getNanos() / 1e9));

    // Display the rotated bounding box for where the text is on the frame.
    System.out.println("Rotated Bounding Box Vertices:");
    List<NormalizedVertex> vertices = textFrame.getRotatedBoundingBox().getVerticesList();
    for (NormalizedVertex normalizedVertex : vertices) {
      System.out.println(
          String.format(
              "\tVertex.x: %.2f, Vertex.y: %.2f",
              normalizedVertex.getX(), normalizedVertex.getY()));
    }
    return results;
  }
}

Node.js

// Imports the Google Cloud Video Intelligence library + Node's fs library
const Video = require('@google-cloud/video-intelligence');
const fs = require('fs');
const util = require('util');
// Creates a client
const video = new Video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Reads a local video file and converts it to base64
const file = await util.promisify(fs.readFile)(path);
const inputContent = file.toString('base64');

const request = {
  inputContent: inputContent,
  features: ['TEXT_DETECTION'],
};
// Detects text in a video
const [operation] = await video.annotateVideo(request);
const results = await operation.promise();
console.log('Waiting for operation to complete...');

// Gets annotations for video
const textAnnotations = results[0].annotationResults[0].textAnnotations;
textAnnotations.forEach(textAnnotation => {
  console.log(`Text ${textAnnotation.text} occurs at:`);
  textAnnotation.segments.forEach(segment => {
    const time = segment.segment;
    if (time.startTimeOffset.seconds === undefined) {
      time.startTimeOffset.seconds = 0;
    }
    if (time.startTimeOffset.nanos === undefined) {
      time.startTimeOffset.nanos = 0;
    }
    if (time.endTimeOffset.seconds === undefined) {
      time.endTimeOffset.seconds = 0;
    }
    if (time.endTimeOffset.nanos === undefined) {
      time.endTimeOffset.nanos = 0;
    }
    console.log(
      `\tStart: ${time.startTimeOffset.seconds || 0}` +
        `.${(time.startTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(
      `\tEnd: ${time.endTimeOffset.seconds || 0}.` +
        `${(time.endTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(`\tConfidence: ${segment.confidence}`);
    segment.frames.forEach(frame => {
      const timeOffset = frame.timeOffset;
      console.log(
        `Time offset for the frame: ${timeOffset.seconds || 0}` +
          `.${(timeOffset.nanos / 1e6).toFixed(0)}s`
      );
      console.log('Rotated Bounding Box Vertices:');
      frame.rotatedBoundingBox.vertices.forEach(vertex => {
        console.log(`Vertex.x:${vertex.x}, Vertex.y:${vertex.y}`);
      });
    });
  });
});

Python

"""Detect text in a local video."""
from google.cloud import videointelligence

video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.TEXT_DETECTION]
video_context = videointelligence.VideoContext()

with io.open(path, "rb") as file:
    input_content = file.read()

operation = video_client.annotate_video(
    request={
        "features": features,
        "input_content": input_content,
        "video_context": video_context,
    }
)

print("\nProcessing video for text detection.")
result = operation.result(timeout=300)

# The first result is retrieved because a single video was processed.
annotation_result = result.annotation_results[0]

for text_annotation in annotation_result.text_annotations:
    print("\nText: {}".format(text_annotation.text))

    # Get the first text segment
    text_segment = text_annotation.segments[0]
    start_time = text_segment.segment.start_time_offset
    end_time = text_segment.segment.end_time_offset
    print(
        "start_time: {}, end_time: {}".format(
            start_time.seconds + start_time.microseconds * 1e-6,
            end_time.seconds + end_time.microseconds * 1e-6,
        )
    )

    print("Confidence: {}".format(text_segment.confidence))

    # Show the result for the first frame in this segment.
    frame = text_segment.frames[0]
    time_offset = frame.time_offset
    print(
        "Time offset for the first frame: {}".format(
            time_offset.seconds + time_offset.microseconds * 1e-6
        )
    )
    print("Rotated Bounding Box Vertices:")
    for vertex in frame.rotated_bounding_box.vertices:
        print("\tVertex.x: {}, Vertex.y: {}".format(vertex.x, vertex.y))