Guía de inicio rápido

En esta página, se muestra cómo realizar una solicitud a la API de Video Intelligence con curl para proyectos de tu propiedad.

Puedes seguir los pasos que se enumeran en esta página o probar esta guía de inicio rápido como un entrenamiento del lab de Google Cloud.

Probar con un lab

Antes de comenzar

  1. Accede a tu cuenta de Google Cloud. Si eres nuevo en Google Cloud, crea una cuenta para evaluar el rendimiento de nuestros productos en situaciones reales. Los clientes nuevos también obtienen $300 en créditos gratuitos para ejecutar, probar y, además, implementar cargas de trabajo.
  2. En la página del selector de proyectos de Google Cloud Console, selecciona o crea un proyecto de Google Cloud.

    Ir al selector de proyectos

  3. Asegúrate de que la facturación esté habilitada para tu proyecto de Cloud. Descubre cómo confirmar que tienes habilitada la facturación en un proyecto.

  4. Habilita la API necesaria.

    Habilita la API

  5. Crea una cuenta de servicio:

    1. En Cloud Console, ve a la página Crear cuenta de servicio.

      Ir a Crear cuenta de servicio
    2. Selecciona un proyecto
    3. Ingresa un nombre en el campo Nombre de cuenta de servicio. Cloud Console completa el campo ID de cuenta de servicio según este nombre.

      Opcional: en el campo Descripción de la cuenta de servicio, ingresa una descripción. Por ejemplo, Service account for quickstart.

    4. Haz clic en Listo para terminar de crear la cuenta de servicio.

      No cierres la ventana del navegador. La usarás en la próxima tarea.

  6. Para crear una clave de cuenta de servicio, haz lo siguiente:

    1. En Cloud Console, haz clic en la dirección de correo electrónico de la cuenta de servicio que creaste.
    2. Haga clic en Claves.
    3. Haz clic en Agregar clave, luego haz clic en Crear clave nueva.
    4. Haga clic en Crear. Se descargará un archivo de claves JSON en tu computadora.
    5. Haga clic en Cerrar.
  7. Configura la variable de entorno GOOGLE_APPLICATION_CREDENTIALS en la ruta del archivo JSON que contiene la clave de tu cuenta de servicio. Esta variable solo se aplica a la sesión actual de shell. Por lo tanto, si abres una sesión nueva, deberás volver a configurar la variable.

  8. Instala e inicializa el SDK de Cloud.
  9. En la página del selector de proyectos de Google Cloud Console, selecciona o crea un proyecto de Google Cloud.

    Ir al selector de proyectos

  10. Asegúrate de que la facturación esté habilitada para tu proyecto de Cloud. Descubre cómo confirmar que tienes habilitada la facturación en un proyecto.

  11. Habilita la API necesaria.

    Habilita la API

  12. Crea una cuenta de servicio:

    1. En Cloud Console, ve a la página Crear cuenta de servicio.

      Ir a Crear cuenta de servicio
    2. Selecciona un proyecto
    3. Ingresa un nombre en el campo Nombre de cuenta de servicio. Cloud Console completa el campo ID de cuenta de servicio según este nombre.

      Opcional: en el campo Descripción de la cuenta de servicio, ingresa una descripción. Por ejemplo, Service account for quickstart.

    4. Haz clic en Listo para terminar de crear la cuenta de servicio.

      No cierres la ventana del navegador. La usarás en la próxima tarea.

  13. Para crear una clave de cuenta de servicio, haz lo siguiente:

    1. En Cloud Console, haz clic en la dirección de correo electrónico de la cuenta de servicio que creaste.
    2. Haga clic en Claves.
    3. Haz clic en Agregar clave, luego haz clic en Crear clave nueva.
    4. Haga clic en Crear. Se descargará un archivo de claves JSON en tu computadora.
    5. Haga clic en Cerrar.
  14. Configura la variable de entorno GOOGLE_APPLICATION_CREDENTIALS en la ruta del archivo JSON que contiene la clave de tu cuenta de servicio. Esta variable solo se aplica a la sesión actual de shell. Por lo tanto, si abres una sesión nueva, deberás volver a configurar la variable.

  15. Instala e inicializa el SDK de Cloud.

Haz una solicitud para anotar un video

gcloud

Usa la herramienta de línea de comandos de gcloud para llamar al comando detect-labels en la ruta del video que se analizará.

gcloud ml video detect-labels gs://YOUR_BUCKET/YOUR_OBJECT

Línea de comandos

  1. Usa curl para realizar una solicitud POST al método videos:annotate mediante el comando gcloud auth application-default print-access-token a fin de pegar un token de acceso en tu cuenta de servicio:

    curl -X POST \
      -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
      -H "Content-Type: application/json; charset=utf-8" \
      --data '{"inputUri":"gs://YOUR_BUCKET/YOUR_OBJECT","features":["LABEL_DETECTION"]}'\
      "https://videointelligence.googleapis.com/v1/videos:annotate"
    
  2. La API de Video Intelligence crea una operación para procesar su solicitud. En la respuesta, se incluye el nombre de la operación:

    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
    }
    
  3. Puedes solicitar información sobre la operación mediante una llamanda al extremo v1.operations y reemplaza OPERATION_NAME en el siguiente ejemplo con el nombre que se muestra en el paso anterior:

     curl -X GET \
       -H "Authorization: Bearer "$(gcloud auth application-default print-access-token) \
       https://videointelligence.googleapis.com/v1/OPERATION_NAME
    
  4. Verás información relacionada con tu operación. Si la operación se completó, se incluirá un campo done y se establecerá en true:

    {
      "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID",
      "metadata": {
      "@type": "type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoProgress",
        "annotationProgress": [
          {
            "inputUri": "/YOUR_BUCKET/YOUR_OBJECT",
            "progressPercent": 100,
            "startTime": "2020-04-01T22:13:17.978847Z",
            "updateTime": "2020-04-01T22:13:29.576004Z"
          }
        ]
      },
      "done": true,
     ...
    }
    

Dele algo de tiempo a la solicitud (por lo general, un minuto), la misma solicitud muestra los resultados de la anotación:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID",
  "metadata": {
    "@type": "type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoProgress",
    "annotationProgress": [
      {
        "inputUri": "YOUR_BUCKET/YOUR_OBJECT",
        "progressPercent": 100,
        "startTime": "2020-04-01T22:13:17.978847Z",
        "updateTime": "2020-04-01T22:13:29.576004Z"
      }
    ]
  },
  "done": true,
  "response": {
    "@type": "type.googleapis.com/google.cloud.videointelligence.v1.AnnotateVideoResponse",
    "annotationResults": [
      {
        "inputUri": "/YOUR_BUCKET/YOUR_OBJECT",
        "segmentLabelAnnotations": [
          {
            "entity": {
              "entityId": "/m/07bsy",
              "description": "transport",
              "languageCode": "en-US"
            },
            "segments": [
              {
                "segment": {
                  "startTimeOffset": "0s",
                  "endTimeOffset": "38.757872s"
                },
                "confidence": 0.81231534
              }
            ]
          },
         {
          "entity": {
              "entityId": "/m/01n32",
              "description": "city",
              "languageCode": "en-US"
            },
            "categoryEntities": [
              {
                "entityId": "/m/043rvww",
                "description": "geographical feature",
                "languageCode": "en-US"
              }
            ],
            "segments": [
              {
                "segment": {
                  "startTimeOffset": "0s",
                  "endTimeOffset": "38.757872s"
                },
                "confidence": 0.3942462
              }
            ]
          },
          ...
          {
            "entity": {
              "entityId": "/m/06gfj",
              "description": "road",
              "languageCode": "en-US"
            },
            "segments": [
              {
                "segment": {
                  "startTimeOffset": "0s",
                  "endTimeOffset": "38.757872s"
                },
                "confidence": 0.86698604
              }
            ]
          }
        ]
      }
    ]
  }
}
   

Felicitaciones Enviaste tu primera solicitud a la API de Video Intelligence.

Limpia

A fin de evitar cargos innecesarios en Google Cloud Platform, usa Cloud Console para borrar tu proyecto si no lo necesitas.

¿Qué sigue?