Analyze videos for labels

The Video Intelligence API can identify entities shown in video footage using the LABEL_DETECTION feature. This feature identifies objects, locations, activities, animal species, products, and more.

The analysis can be compartmentalized as follows:

  • Frame level:
    Entities are identified and labeled within each frame (with one frame per second sampling).
  • Shot level:
    Shots are automatically detected within every segment (or video). Entities are then identified and labeled within each shot.
  • Segment level:
    User-selected segments of a video can be specified for analysis by stipulating beginning and ending timestamps for the purposes of annotation (see VideoSegment). Entities are then identified and labeled within each segment. If no segments are specified, the whole video is treated as one segment.

Annotate a local file

Here is an example of performing video analysis for labels on a local file.

Looking for something more in-depth? Check out our detailed Python tutorial.

REST & CMD LINE

Send the process request

The following shows how to send a POST request to the videos:annotate method. You can configure the LabelDetectionMode to shot-level and/or frame-level annotations. We recommend using SHOT_AND_FRAME_MODE. The example uses the access token for a service account set up for the project using the Cloud SDK. For instructions on installing the Cloud SDK, setting up a project with a service account, and obtaining an access token, see the Video Intelligence quickstart.

Before using any of the request data below, make the following replacements:

HTTP method and URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Request JSON body:

{
  "inputContent": "BASE64_ENCODED_CONTENT",
  "features": ["LABEL_DETECTION"],
}

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

If the request is successful, Video Intelligence returns the name of your operation.

Get the results

To get the results of your request, you must send a GET request to the projects.locations.operations resource. The following shows how to send such a request.

Before using any of the request data below, make the following replacements:

  • OPERATION_NAME: the name of the operation as returned by the Video Intelligence API. The operation name has the format projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID

HTTP method and URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

Go


func label(w io.Writer, file string) error {
	ctx := context.Background()
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %v", err)
	}
	defer client.Close()

	fileBytes, err := ioutil.ReadFile(file)
	if err != nil {
		return err
	}

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		Features: []videopb.Feature{
			videopb.Feature_LABEL_DETECTION,
		},
		InputContent: fileBytes,
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %v", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	printLabels := func(labels []*videopb.LabelAnnotation) {
		for _, label := range labels {
			fmt.Fprintf(w, "\tDescription: %s\n", label.Entity.Description)
			for _, category := range label.CategoryEntities {
				fmt.Fprintf(w, "\t\tCategory: %s\n", category.Description)
			}
			for _, segment := range label.Segments {
				start, _ := ptypes.Duration(segment.Segment.StartTimeOffset)
				end, _ := ptypes.Duration(segment.Segment.EndTimeOffset)
				fmt.Fprintf(w, "\t\tSegment: %s to %s\n", start, end)
			}
		}
	}

	// A single video was processed. Get the first result.
	result := resp.AnnotationResults[0]

	fmt.Fprintln(w, "SegmentLabelAnnotations:")
	printLabels(result.SegmentLabelAnnotations)
	fmt.Fprintln(w, "ShotLabelAnnotations:")
	printLabels(result.ShotLabelAnnotations)
	fmt.Fprintln(w, "FrameLabelAnnotations:")
	printLabels(result.FrameLabelAnnotations)

	return nil
}

Java

// Instantiate a com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient
try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
  // Read file and encode into Base64
  Path path = Paths.get(filePath);
  byte[] data = Files.readAllBytes(path);

  AnnotateVideoRequest request =
      AnnotateVideoRequest.newBuilder()
          .setInputContent(ByteString.copyFrom(data))
          .addFeatures(Feature.LABEL_DETECTION)
          .build();
  // Create an operation that will contain the response when the operation completes.
  OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> response =
      client.annotateVideoAsync(request);

  System.out.println("Waiting for operation to complete...");
  for (VideoAnnotationResults results : response.get().getAnnotationResultsList()) {
    // process video / segment level label annotations
    System.out.println("Locations: ");
    for (LabelAnnotation labelAnnotation : results.getSegmentLabelAnnotationsList()) {
      System.out.println("Video label: " + labelAnnotation.getEntity().getDescription());
      // categories
      for (Entity categoryEntity : labelAnnotation.getCategoryEntitiesList()) {
        System.out.println("Video label category: " + categoryEntity.getDescription());
      }
      // segments
      for (LabelSegment segment : labelAnnotation.getSegmentsList()) {
        double startTime =
            segment.getSegment().getStartTimeOffset().getSeconds()
                + segment.getSegment().getStartTimeOffset().getNanos() / 1e9;
        double endTime =
            segment.getSegment().getEndTimeOffset().getSeconds()
                + segment.getSegment().getEndTimeOffset().getNanos() / 1e9;
        System.out.printf("Segment location: %.3f:%.2f\n", startTime, endTime);
        System.out.println("Confidence: " + segment.getConfidence());
      }
    }

    // process shot label annotations
    for (LabelAnnotation labelAnnotation : results.getShotLabelAnnotationsList()) {
      System.out.println("Shot label: " + labelAnnotation.getEntity().getDescription());
      // categories
      for (Entity categoryEntity : labelAnnotation.getCategoryEntitiesList()) {
        System.out.println("Shot label category: " + categoryEntity.getDescription());
      }
      // segments
      for (LabelSegment segment : labelAnnotation.getSegmentsList()) {
        double startTime =
            segment.getSegment().getStartTimeOffset().getSeconds()
                + segment.getSegment().getStartTimeOffset().getNanos() / 1e9;
        double endTime =
            segment.getSegment().getEndTimeOffset().getSeconds()
                + segment.getSegment().getEndTimeOffset().getNanos() / 1e9;
        System.out.printf("Segment location: %.3f:%.2f\n", startTime, endTime);
        System.out.println("Confidence: " + segment.getConfidence());
      }
    }

    // process frame label annotations
    for (LabelAnnotation labelAnnotation : results.getFrameLabelAnnotationsList()) {
      System.out.println("Frame label: " + labelAnnotation.getEntity().getDescription());
      // categories
      for (Entity categoryEntity : labelAnnotation.getCategoryEntitiesList()) {
        System.out.println("Frame label category: " + categoryEntity.getDescription());
      }
      // segments
      for (LabelSegment segment : labelAnnotation.getSegmentsList()) {
        double startTime =
            segment.getSegment().getStartTimeOffset().getSeconds()
                + segment.getSegment().getStartTimeOffset().getNanos() / 1e9;
        double endTime =
            segment.getSegment().getEndTimeOffset().getSeconds()
                + segment.getSegment().getEndTimeOffset().getNanos() / 1e9;
        System.out.printf("Segment location: %.3f:%.2f\n", startTime, endTime);
        System.out.println("Confidence: " + segment.getConfidence());
      }
    }
  }
}

Node.js

// Imports the Google Cloud Video Intelligence library + Node's fs library
const video = require('@google-cloud/video-intelligence').v1;
const fs = require('fs');
const util = require('util');

// Creates a client
const client = new video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const path = 'Local file to analyze, e.g. ./my-file.mp4';

// Reads a local video file and converts it to base64
const readFile = util.promisify(fs.readFile);
const file = await readFile(path);
const inputContent = file.toString('base64');

// Constructs request
const request = {
  inputContent: inputContent,
  features: ['LABEL_DETECTION'],
};

// Detects labels in a video
const [operation] = await client.annotateVideo(request);
console.log('Waiting for operation to complete...');
const [operationResult] = await operation.promise();
// Gets annotations for video
const annotations = operationResult.annotationResults[0];

const labels = annotations.segmentLabelAnnotations;
labels.forEach(label => {
  console.log(`Label ${label.entity.description} occurs at:`);
  label.segments.forEach(segment => {
    const time = segment.segment;
    if (time.startTimeOffset.seconds === undefined) {
      time.startTimeOffset.seconds = 0;
    }
    if (time.startTimeOffset.nanos === undefined) {
      time.startTimeOffset.nanos = 0;
    }
    if (time.endTimeOffset.seconds === undefined) {
      time.endTimeOffset.seconds = 0;
    }
    if (time.endTimeOffset.nanos === undefined) {
      time.endTimeOffset.nanos = 0;
    }
    console.log(
      `\tStart: ${time.startTimeOffset.seconds}` +
        `.${(time.startTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(
      `\tEnd: ${time.endTimeOffset.seconds}.` +
        `${(time.endTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(`\tConfidence: ${segment.confidence}`);
  });
});

Python

For more information on installing and using the Video Intelligence API Client Library for Python, refer to Video Intelligence API Client Libraries.
"""Detect labels given a file path."""
video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.LABEL_DETECTION]

with io.open(path, "rb") as movie:
    input_content = movie.read()

operation = video_client.annotate_video(
    request={"features": features, "input_content": input_content}
)
print("\nProcessing video for label annotations:")

result = operation.result(timeout=90)
print("\nFinished processing.")

# Process video/segment level label annotations
segment_labels = result.annotation_results[0].segment_label_annotations
for i, segment_label in enumerate(segment_labels):
    print("Video label description: {}".format(segment_label.entity.description))
    for category_entity in segment_label.category_entities:
        print(
            "\tLabel category description: {}".format(category_entity.description)
        )

    for i, segment in enumerate(segment_label.segments):
        start_time = (
            segment.segment.start_time_offset.seconds
            + segment.segment.start_time_offset.microseconds / 1e6
        )
        end_time = (
            segment.segment.end_time_offset.seconds
            + segment.segment.end_time_offset.microseconds / 1e6
        )
        positions = "{}s to {}s".format(start_time, end_time)
        confidence = segment.confidence
        print("\tSegment {}: {}".format(i, positions))
        print("\tConfidence: {}".format(confidence))
    print("\n")

# Process shot level label annotations
shot_labels = result.annotation_results[0].shot_label_annotations
for i, shot_label in enumerate(shot_labels):
    print("Shot label description: {}".format(shot_label.entity.description))
    for category_entity in shot_label.category_entities:
        print(
            "\tLabel category description: {}".format(category_entity.description)
        )

    for i, shot in enumerate(shot_label.segments):
        start_time = (
            shot.segment.start_time_offset.seconds
            + shot.segment.start_time_offset.microseconds / 1e6
        )
        end_time = (
            shot.segment.end_time_offset.seconds
            + shot.segment.end_time_offset.microseconds / 1e6
        )
        positions = "{}s to {}s".format(start_time, end_time)
        confidence = shot.confidence
        print("\tSegment {}: {}".format(i, positions))
        print("\tConfidence: {}".format(confidence))
    print("\n")

# Process frame level label annotations
frame_labels = result.annotation_results[0].frame_label_annotations
for i, frame_label in enumerate(frame_labels):
    print("Frame label description: {}".format(frame_label.entity.description))
    for category_entity in frame_label.category_entities:
        print(
            "\tLabel category description: {}".format(category_entity.description)
        )

    # Each frame_label_annotation has many frames,
    # here we print information only about the first frame.
    frame = frame_label.frames[0]
    time_offset = frame.time_offset.seconds + frame.time_offset.microseconds / 1e6
    print("\tFirst frame time offset: {}s".format(time_offset))
    print("\tFirst frame confidence: {}".format(frame.confidence))
    print("\n")

Additional languages

C#: Please follow the C# setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for .NET.

PHP: Please follow the PHP setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for PHP.

Ruby: Please follow the Ruby setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for Ruby.

Annotate a file on Cloud Storage

Here is an example of performing video analysis for labels on a file located in Cloud Storage.

REST & CMD LINE

For more information on installing and using the Video Intelligence API Client Library for Python, refer to Video Intelligence API Client Libraries.

Send the process request

The following shows how to send a POST request to the annotate method. The example uses the access token for a service account set up for the project using the Cloud SDK. For instructions on installing the Cloud SDK, setting up a project with a service account, and obtaining an access token, see the Video Intelligence quickstart.

Before using any of the request data below, make the following replacements:

  • INPUT_URI: a Cloud Storage bucket that contains the file you want to annotate, including the file name. Must start with gs://.

HTTP method and URL:

POST https://videointelligence.googleapis.com/v1/videos:annotate

Request JSON body:

{
  "inputUri": "INPUT_URI",
  "features": ["LABEL_DETECTION"],
}

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

{
  "name": "projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID"
}

If the request is successful, the Video Intelligence returns the name of your operation.

Get the results

To get the results of your request, you must send a GET request to the projects.locations.operations resource. The following shows how to send such a request.

Before using any of the request data below, make the following replacements:

  • OPERATION_NAME: the name of the operation as returned by the Video Intelligence API. The operation name has the format projects/PROJECT_NUMBER/locations/LOCATION_ID/operations/OPERATION_ID

HTTP method and URL:

GET https://videointelligence.googleapis.com/v1/OPERATION_NAME

To send your request, expand one of these options:

You should receive a JSON response similar to the following:

Download annotation results

Copy the annotation from the source to the destination bucket: (see Copy files and objects)

gsutil cp gcs_uri gs://my-bucket

Note: If the output gcs uri is provided by the user, then the annotation is stored in that gcs uri.

Go


func labelURI(w io.Writer, file string) error {
	ctx := context.Background()
	client, err := video.NewClient(ctx)
	if err != nil {
		return fmt.Errorf("video.NewClient: %v", err)
	}
	defer client.Close()

	op, err := client.AnnotateVideo(ctx, &videopb.AnnotateVideoRequest{
		Features: []videopb.Feature{
			videopb.Feature_LABEL_DETECTION,
		},
		InputUri: file,
	})
	if err != nil {
		return fmt.Errorf("AnnotateVideo: %v", err)
	}

	resp, err := op.Wait(ctx)
	if err != nil {
		return fmt.Errorf("Wait: %v", err)
	}

	printLabels := func(labels []*videopb.LabelAnnotation) {
		for _, label := range labels {
			fmt.Fprintf(w, "\tDescription: %s\n", label.Entity.Description)
			for _, category := range label.CategoryEntities {
				fmt.Fprintf(w, "\t\tCategory: %s\n", category.Description)
			}
			for _, segment := range label.Segments {
				start, _ := ptypes.Duration(segment.Segment.StartTimeOffset)
				end, _ := ptypes.Duration(segment.Segment.EndTimeOffset)
				fmt.Fprintf(w, "\t\tSegment: %s to %s\n", start, end)
			}
		}
	}

	// A single video was processed. Get the first result.
	result := resp.AnnotationResults[0]

	fmt.Fprintln(w, "SegmentLabelAnnotations:")
	printLabels(result.SegmentLabelAnnotations)
	fmt.Fprintln(w, "ShotLabelAnnotations:")
	printLabels(result.ShotLabelAnnotations)
	fmt.Fprintln(w, "FrameLabelAnnotations:")
	printLabels(result.FrameLabelAnnotations)

	return nil
}

Java

// Instantiate a com.google.cloud.videointelligence.v1.VideoIntelligenceServiceClient
try (VideoIntelligenceServiceClient client = VideoIntelligenceServiceClient.create()) {
  // Provide path to file hosted on GCS as "gs://bucket-name/..."
  AnnotateVideoRequest request =
      AnnotateVideoRequest.newBuilder()
          .setInputUri(gcsUri)
          .addFeatures(Feature.LABEL_DETECTION)
          .build();
  // Create an operation that will contain the response when the operation completes.
  OperationFuture<AnnotateVideoResponse, AnnotateVideoProgress> response =
      client.annotateVideoAsync(request);

  System.out.println("Waiting for operation to complete...");
  for (VideoAnnotationResults results : response.get().getAnnotationResultsList()) {
    // process video / segment level label annotations
    System.out.println("Locations: ");
    for (LabelAnnotation labelAnnotation : results.getSegmentLabelAnnotationsList()) {
      System.out.println("Video label: " + labelAnnotation.getEntity().getDescription());
      // categories
      for (Entity categoryEntity : labelAnnotation.getCategoryEntitiesList()) {
        System.out.println("Video label category: " + categoryEntity.getDescription());
      }
      // segments
      for (LabelSegment segment : labelAnnotation.getSegmentsList()) {
        double startTime =
            segment.getSegment().getStartTimeOffset().getSeconds()
                + segment.getSegment().getStartTimeOffset().getNanos() / 1e9;
        double endTime =
            segment.getSegment().getEndTimeOffset().getSeconds()
                + segment.getSegment().getEndTimeOffset().getNanos() / 1e9;
        System.out.printf("Segment location: %.3f:%.3f\n", startTime, endTime);
        System.out.println("Confidence: " + segment.getConfidence());
      }
    }

    // process shot label annotations
    for (LabelAnnotation labelAnnotation : results.getShotLabelAnnotationsList()) {
      System.out.println("Shot label: " + labelAnnotation.getEntity().getDescription());
      // categories
      for (Entity categoryEntity : labelAnnotation.getCategoryEntitiesList()) {
        System.out.println("Shot label category: " + categoryEntity.getDescription());
      }
      // segments
      for (LabelSegment segment : labelAnnotation.getSegmentsList()) {
        double startTime =
            segment.getSegment().getStartTimeOffset().getSeconds()
                + segment.getSegment().getStartTimeOffset().getNanos() / 1e9;
        double endTime =
            segment.getSegment().getEndTimeOffset().getSeconds()
                + segment.getSegment().getEndTimeOffset().getNanos() / 1e9;
        System.out.printf("Segment location: %.3f:%.3f\n", startTime, endTime);
        System.out.println("Confidence: " + segment.getConfidence());
      }
    }

    // process frame label annotations
    for (LabelAnnotation labelAnnotation : results.getFrameLabelAnnotationsList()) {
      System.out.println("Frame label: " + labelAnnotation.getEntity().getDescription());
      // categories
      for (Entity categoryEntity : labelAnnotation.getCategoryEntitiesList()) {
        System.out.println("Frame label category: " + categoryEntity.getDescription());
      }
      // segments
      for (LabelSegment segment : labelAnnotation.getSegmentsList()) {
        double startTime =
            segment.getSegment().getStartTimeOffset().getSeconds()
                + segment.getSegment().getStartTimeOffset().getNanos() / 1e9;
        double endTime =
            segment.getSegment().getEndTimeOffset().getSeconds()
                + segment.getSegment().getEndTimeOffset().getNanos() / 1e9;
        System.out.printf("Segment location: %.3f:%.2f\n", startTime, endTime);
        System.out.println("Confidence: " + segment.getConfidence());
      }
    }
  }
}

Node.js

// Imports the Google Cloud Video Intelligence library
const video = require('@google-cloud/video-intelligence').v1;

// Creates a client
const client = new video.VideoIntelligenceServiceClient();

/**
 * TODO(developer): Uncomment the following line before running the sample.
 */
// const gcsUri = 'GCS URI of the video to analyze, e.g. gs://my-bucket/my-video.mp4';

const request = {
  inputUri: gcsUri,
  features: ['LABEL_DETECTION'],
};

// Detects labels in a video
const [operation] = await client.annotateVideo(request);
console.log('Waiting for operation to complete...');
const [operationResult] = await operation.promise();

// Gets annotations for video
const annotations = operationResult.annotationResults[0];

const labels = annotations.segmentLabelAnnotations;
labels.forEach(label => {
  console.log(`Label ${label.entity.description} occurs at:`);
  label.segments.forEach(segment => {
    const time = segment.segment;
    if (time.startTimeOffset.seconds === undefined) {
      time.startTimeOffset.seconds = 0;
    }
    if (time.startTimeOffset.nanos === undefined) {
      time.startTimeOffset.nanos = 0;
    }
    if (time.endTimeOffset.seconds === undefined) {
      time.endTimeOffset.seconds = 0;
    }
    if (time.endTimeOffset.nanos === undefined) {
      time.endTimeOffset.nanos = 0;
    }
    console.log(
      `\tStart: ${time.startTimeOffset.seconds}` +
        `.${(time.startTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(
      `\tEnd: ${time.endTimeOffset.seconds}.` +
        `${(time.endTimeOffset.nanos / 1e6).toFixed(0)}s`
    );
    console.log(`\tConfidence: ${segment.confidence}`);
  });
});

Python

""" Detects labels given a GCS path. """
video_client = videointelligence.VideoIntelligenceServiceClient()
features = [videointelligence.Feature.LABEL_DETECTION]

mode = videointelligence.LabelDetectionMode.SHOT_AND_FRAME_MODE
config = videointelligence.LabelDetectionConfig(label_detection_mode=mode)
context = videointelligence.VideoContext(label_detection_config=config)

operation = video_client.annotate_video(
    request={"features": features, "input_uri": path, "video_context": context}
)
print("\nProcessing video for label annotations:")

result = operation.result(timeout=180)
print("\nFinished processing.")

# Process video/segment level label annotations
segment_labels = result.annotation_results[0].segment_label_annotations
for i, segment_label in enumerate(segment_labels):
    print("Video label description: {}".format(segment_label.entity.description))
    for category_entity in segment_label.category_entities:
        print(
            "\tLabel category description: {}".format(category_entity.description)
        )

    for i, segment in enumerate(segment_label.segments):
        start_time = (
            segment.segment.start_time_offset.seconds
            + segment.segment.start_time_offset.microseconds / 1e6
        )
        end_time = (
            segment.segment.end_time_offset.seconds
            + segment.segment.end_time_offset.microseconds / 1e6
        )
        positions = "{}s to {}s".format(start_time, end_time)
        confidence = segment.confidence
        print("\tSegment {}: {}".format(i, positions))
        print("\tConfidence: {}".format(confidence))
    print("\n")

# Process shot level label annotations
shot_labels = result.annotation_results[0].shot_label_annotations
for i, shot_label in enumerate(shot_labels):
    print("Shot label description: {}".format(shot_label.entity.description))
    for category_entity in shot_label.category_entities:
        print(
            "\tLabel category description: {}".format(category_entity.description)
        )

    for i, shot in enumerate(shot_label.segments):
        start_time = (
            shot.segment.start_time_offset.seconds
            + shot.segment.start_time_offset.microseconds / 1e6
        )
        end_time = (
            shot.segment.end_time_offset.seconds
            + shot.segment.end_time_offset.microseconds / 1e6
        )
        positions = "{}s to {}s".format(start_time, end_time)
        confidence = shot.confidence
        print("\tSegment {}: {}".format(i, positions))
        print("\tConfidence: {}".format(confidence))
    print("\n")

# Process frame level label annotations
frame_labels = result.annotation_results[0].frame_label_annotations
for i, frame_label in enumerate(frame_labels):
    print("Frame label description: {}".format(frame_label.entity.description))
    for category_entity in frame_label.category_entities:
        print(
            "\tLabel category description: {}".format(category_entity.description)
        )

    # Each frame_label_annotation has many frames,
    # here we print information only about the first frame.
    frame = frame_label.frames[0]
    time_offset = frame.time_offset.seconds + frame.time_offset.microseconds / 1e6
    print("\tFirst frame time offset: {}s".format(time_offset))
    print("\tFirst frame confidence: {}".format(frame.confidence))
    print("\n")

Additional languages

C#: Please follow the C# setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for .NET.

PHP: Please follow the PHP setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for PHP.

Ruby: Please follow the Ruby setup instructions on the client libraries page and then visit the Video Intelligence reference documentation for Ruby.