使用 Google 搜尋工具搭配 Gemini 多模態

這個範例示範如何搭配使用 Gemini 和 Google 搜尋工具,根據搜尋查詢生成文字。

深入探索

如需包含這個程式碼範例的詳細說明文件,請參閱下列內容:

程式碼範例

Go

在試用這個範例之前,請先按照Go使用用戶端程式庫的 Vertex AI 快速入門中的操作說明進行設定。 詳情請參閱 Vertex AI Go API 參考說明文件

如要向 Vertex AI 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

import (
	"context"
	"fmt"
	"io"

	genai "google.golang.org/genai"
)

// generateWithGoogleSearch shows how to generate text using Google Search.
func generateWithGoogleSearch(w io.Writer) error {
	ctx := context.Background()

	client, err := genai.NewClient(ctx, &genai.ClientConfig{
		HTTPOptions: genai.HTTPOptions{APIVersion: "v1"},
	})
	if err != nil {
		return fmt.Errorf("failed to create genai client: %w", err)
	}

	modelName := "gemini-2.5-flash"
	contents := []*genai.Content{
		{Parts: []*genai.Part{
			{Text: "When is the next total solar eclipse in the United States?"},
		},
			Role: "user"},
	}
	config := &genai.GenerateContentConfig{
		Tools: []*genai.Tool{
			{GoogleSearch: &genai.GoogleSearch{}},
		},
	}

	resp, err := client.Models.GenerateContent(ctx, modelName, contents, config)
	if err != nil {
		return fmt.Errorf("failed to generate content: %w", err)
	}

	respText := resp.Text()

	fmt.Fprintln(w, respText)

	// Example response:
	// The next total solar eclipse in the United States will occur on March 30, 2033, but it will only ...

	return nil
}

Java

在試用這個範例之前,請先按照Java使用用戶端程式庫的 Vertex AI 快速入門中的操作說明進行設定。 詳情請參閱 Vertex AI Java API 參考說明文件

如要向 Vertex AI 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。


import com.google.genai.Client;
import com.google.genai.types.GenerateContentConfig;
import com.google.genai.types.GenerateContentResponse;
import com.google.genai.types.GoogleSearch;
import com.google.genai.types.HttpOptions;
import com.google.genai.types.Tool;

public class ToolsGoogleSearchWithText {

  public static void main(String[] args) {
    // TODO(developer): Replace these variables before running the sample.
    String modelId = "gemini-2.5-flash";
    generateContent(modelId);
  }

  // Generates text with Google Search tool
  public static String generateContent(String modelId) {
    // Initialize client that will be used to send requests. This client only needs to be created
    // once, and can be reused for multiple requests.
    try (Client client =
        Client.builder()
            .location("global")
            .vertexAI(true)
            .httpOptions(HttpOptions.builder().apiVersion("v1").build())
            .build()) {

      // Create a GenerateContentConfig and set Google Search tool
      GenerateContentConfig contentConfig =
          GenerateContentConfig.builder()
              .tools(Tool.builder().googleSearch(GoogleSearch.builder().build()).build())
              .build();

      GenerateContentResponse response =
          client.models.generateContent(
              modelId, "When is the next total solar eclipse in the United States?", contentConfig);

      System.out.print(response.text());
      // Example response:
      // The next total solar eclipse in the United States will occur on...
      return response.text();
    }
  }
}

Python

在試用這個範例之前,請先按照Python使用用戶端程式庫的 Vertex AI 快速入門中的操作說明進行設定。 詳情請參閱 Vertex AI Python API 參考說明文件

如要向 Vertex AI 進行驗證,請設定應用程式預設憑證。 詳情請參閱「為本機開發環境設定驗證」。

from google import genai
from google.genai.types import (
    GenerateContentConfig,
    GoogleSearch,
    HttpOptions,
    Tool,
)

client = genai.Client(http_options=HttpOptions(api_version="v1"))

response = client.models.generate_content(
    model="gemini-2.5-flash",
    contents="When is the next total solar eclipse in the United States?",
    config=GenerateContentConfig(
        tools=[
            # Use Google Search Tool
            Tool(google_search=GoogleSearch())
        ],
    ),
)

print(response.text)
# Example response:
# 'The next total solar eclipse in the United States will occur on ...'

後續步驟

如要搜尋及篩選其他 Google Cloud 產品的程式碼範例,請參閱Google Cloud 範例瀏覽器