Genera contenido con llamadas a función de Pydantic

En este ejemplo, se muestra cómo usar la declaración de función de Pydantic para influir en el contenido generado por Gemini MultiModal.

Explora más

Para obtener documentación en la que se incluye esta muestra de código, consulta lo siguiente:

Muestra de código

Python

Antes de probar este ejemplo, sigue las instrucciones de configuración para Python incluidas en la guía de inicio rápido de Vertex AI sobre cómo usar bibliotecas cliente. Para obtener más información, consulta la documentación de referencia de la API de Vertex AI Python.

Para autenticarte en Vertex AI, configura las credenciales predeterminadas de la aplicación. Si deseas obtener más información, consulta Configura la autenticación para un entorno de desarrollo local.

from google import genai
from google.genai.types import GenerateContentConfig, HttpOptions

def get_current_weather(location: str) -> str:
    """Example method. Returns the current weather.

    Args:
        location: The city and state, e.g. San Francisco, CA
    """
    weather_map: dict[str, str] = {
        "Boston, MA": "snowing",
        "San Francisco, CA": "foggy",
        "Seattle, WA": "raining",
        "Austin, TX": "hot",
        "Chicago, IL": "windy",
    }
    return weather_map.get(location, "unknown")

client = genai.Client(http_options=HttpOptions(api_version="v1"))
model_id = "gemini-2.5-flash"

response = client.models.generate_content(
    model=model_id,
    contents="What is the weather like in Boston?",
    config=GenerateContentConfig(
        tools=[get_current_weather],
        temperature=0,
    ),
)

print(response.text)
# Example response:
# The weather in Boston is sunny.

¿Qué sigue?

Para buscar y filtrar muestras de código para otros Google Cloud productos, consulta el Google Cloud navegador de muestras.